Plasma and Fusion Research

Volume 17, 2402034 (2022)

Regular Articles


ICRF Plasma Production with the W7-X Like Antenna in the Uragan-2M Stellarator
Yurii V. KOVTUN1), Vladimir E. MOISEENKO1,2), Alexei V. LOZIN1), Rostislav O. PAVLICHENKO1), Anatolii N. SHAPOVAL1), Liudmila I. GRIGOR'EVA1), Demian I. BARON1), Mykhailo M. KOZULYA1), Sergii M. MAZNICHENKO1), Valerii B. KOROVIN1), Egor D. KRAMSKOY1), Mykola V. ZAMANOV1), Yevgen V. SIUSKO1), Aleksandr Yu. KRASIUK1), Vladislav S. ROMANOV1), Igor E. GARKUSHA1,2), Tom WAUTERS3), Arturo ALONSO4), Rudolf BRAKEL5), Andreas DINKLAGE5), Dirk HARTMANN5), Yevgen KAZAKOV6), Heinrich LAQUA5), Samuel LAZERSON5), Josef ONGENA6), Henning THOMSEN5), Golo FUCHERT5), Torsten STANGE5), Shuji KAMIO7) and the Uragan-2M Team
1)
Institute of Plasma Physics of the NSC KIPT, Kharkiv, Ukraine
2)
V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
3)
ITER Organization, St. Paul-lez-Durance, France
4)
Laboratorio Nacional de Fusion, CIEMAT, Madrid, Spain
5)
Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
6)
Laboratory for Plasma Physics, ERM/KMS, Brussels, Belgium
7)
National Institute for Fusion Science, Toki, 509-5292 Japan
(Received 9 January 2022 / Accepted 21 February 2022 / Published 22 April 2022)

Abstract

The results of the plasma start-up with ICRH of U-2M RF discharges in H2+He mixture with newly implemented controlled gas H2 concentration are presented. The W7-X like ICRH antenna operated in monopole phasing with applied RF power of ∼ 100 kW. We investigated plasma start-up in the pressure range p = 6×10−4 - 9×10−2 Pa. Plasma production with an average density of up to Ne ∼ 1013 cm−3 was observed at frequencies the fundamental harmonic of the hydrogen cyclotron frequency.


Keywords

plasma production, ion cyclotron heating, stellarator, Uragan-2M, RF power

DOI: 10.1585/pfr.17.2402034


References

  • [1] European Research Roadmap to the Realisation of Fusion Energy (Programme Manager, EUROfusion, Garching/Munich, Germany, 2018).
  • [2] T. Klinger et al., Nucl. Fusion 59, 112004 (2019).
  • [3] G. Grieger et al., Phys. Fluids B 4, 2081 (1992).
  • [4] E. Ascasíbar et al., Nucl. Fusion 59, 112019 (2019).
  • [5] V.E. Moiseenko et al., J. Plasma Phys. 86, 905860517 (2020).
  • [6] J. Ongena et al., Phys. Plasmas 21, 061514 (2014).
  • [7] J. Ongena et al., AIP Conf. Proc. 2254, 070003 (2020).
  • [8] D.A. Castano Bardawil et al., Fusion Eng. Des. 166, 112205 (2021).
  • [9] M. Endler et al., Fusion Eng. Des. 167, 112381 (2021).
  • [10] N.B. Marushchenko et al., EPJ Web Conf. 203, 01006 (2019).
  • [11] D. Gradic et al., Nucl. Fusion 55, 033002 (2015).
  • [12] A.V. Lozin et al., Probl. At. Sci. Technol. Ser.: Plasma Phys. 6, 10 (2020).
  • [13] S. Kamio et al., Nucl. Fusion 61, 114004 (2021).
  • [14] V. Bykov et al., Fusion Technol. 17, 140 (1990).
  • [15] O.S. Pavlichenko, Plasma Phys. Control. Fusion 35, B223 (1993).
  • [16] A.V. Lozin et al., Probl. At. Sci. Technol. Ser.: Plasma Phys. 4, 195 (2021).
  • [17] V.B. Korovin and E.D. Kramskoy, Probl. At. Sci. Technol. Ser.: Plasma Phys. 6, 19 (2012).
  • [18] R.O. Pavlichenko et al., Probl. At. Sci. Technol. Ser.: Plasma Phys. 1, 257 (2017).
  • [19] A. Kramida et al., NIST Atomic Spectra Database (ver. ver. 5.7.1), (2019).
  • [20] H.R. Griem, Principles of Plasma Spectroscopy (Cambridge University Press, 1997).
  • [21] I.D. Latimer et al., J. Quant. Spectrosc. Radiat. Transf. 10, 629 (1970).
  • [22] V.G. Konovalov et al., Probl. At. Sci. Technol. Ser.: Plasma Phys. 4, 53 (2002).