Plasma and Fusion Research

Volume 14, 3403061 (2019)

Regular Articles


Transport Simulation for Helical Plasmas by use of Gyrokinetic Transport Model
Shinichiro TODA, Motoki NAKATA, Masanori NUNAMI, Akihiro ISHIZAWA1), Tomo-Hiko WATANABE2) and Hideo SUGAMA
National Institute for Fusion Science, NINS, 322-6 Oroshi-cho, Toki, Gifu 509-5292, Japan
1)
Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
2)
Department of Physics, Nagoya University, Furo-cho, Nagoya, Aichi 464-8602, Japan
(Received 26 December 2018 / Accepted 21 February 2019 / Published 10 April 2019)

Abstract

Transport simulation for the electron and ion temperature profiles is performed in helical plasmas by using the heat diffusivity models and the quasilinear flux models [S. Toda et al., Phys. Plasmas 26, 012510 (2019)] for the electron and ion heat turbulent transport. The turbulent transport for the nonlinear simulation results can be evaluated by these models. The high-Ti and low-Ti plasmas for the discharge in the Large Helical Device (LHD) are studied, where the ion temperature gradient mode is unstable. The electron and the ion temperature profiles of the dynamical simulation results do not contradict with those of the experimental results in the LHD. For the plasmas of the LHD in this study, the transport simulation results by the diffusivity models and the quasilinear flux models for the heat transport to reproduce the nonlinear simulation results in the allowable errors are found to explain the experimental results for the temperature profiles.


Keywords

dynamical simulation, transport model, zonal flow, gyrokinetic simulation, turbulence, helical plasma

DOI: 10.1585/pfr.14.3403061


References

  • [1] J.W. Connor and H.R. Wilson, Plasma Phys. Control. Fusion 36, 719 (1994).
  • [2] W. Horton, Turbulence Transport in Magnetized Plasmas, 2nd ed. (World Scientific Pub. Co Inc; 2017).
  • [3] X. Garbet et al., Nucl. Fusion 50, 0433002 (2010).
  • [4] F. Jenko and W. Dorland, Plasma Phys. Control. Fusion 43, A141 (2001).
  • [5] J. Candy and R.E. Waltz, J. Comput. Phys. 186, 545 (2003).
  • [6] T.-H. Watanabe, H. Sugama and S. Ferrando-Margalet, Nucl. Fusion 47, 1383 (2007).
  • [7] P. Xanthopoulos et al., Phys. Rev. Lett. 99, 035002 (2007).
  • [8] M. Nunami et al., Plasma Fusion Res. 6, 1403001 (2011).
  • [9] A. Ishizawa et al., Phys. Plasmas 21, 055905 (2014).
  • [10] M. Kotschenreuther et al., Phys. Plasmas 2, 2381 (1995).
  • [11] C. Holland et al., Phys. Plasmas 18, 056113 (2011).
  • [12] T.L. Rhodes et al., Nucl. Fusion 51, 063022 (2011).
  • [13] M. Nunami et al., Phys. Plasmas 19, 042504 (2012).
  • [14] M. Nunami, T.-H. Watanabe and H. Sugama, Phys. Plasmas 20, 092307 (2013).
  • [15] J. Candy et al., Phys. Plasmas 16, 060704 (2009).
  • [16] M. Barnes et al., Phys. Plasmas 17, 056109 (2010).
  • [17] M. Yokoyama et al., Plasma Fusion Res. 7, 2403011 (2012).
  • [18] T.-H. Watanabe and H. Sugama, Nucl. Fusion 46, 24 (2006).
  • [19] K. Tanaka et al., Plasma Fusion Res. 5, S2053 (2010).
  • [20] H. Sugama and T.-H. Watanabe, Phys. Plasmas 13, 012501 (2006).
  • [21] S. Ferrando-Margalet, H. Sugama and T.-H. Watanabe, Phys. Plasmas 14, 122505 (2007).
  • [22] S. Toda et al., Plasma Fusion Res. 12, 1303035 (2017).
  • [23] S. Toda et al., Phys. Plasmas 26, 012510 (2019).
  • [24] S. Toda et al., J. Phys.: Conf. Ser. 561, 012020 (2014).
  • [25] T.-H. Watanabe, H. Sugama and S. Ferrando-Margalet, Phys. Rev. Lett. 100, 195002 (2008).
  • [26] A. Wakasa et al., Jpn. J. Appl. Phys. 46, 1157 (2007).
  • [27] S. Toda et al., 20th International Stellarator-Heliotron Workshop 5-9 October 2015, Greifswald, Germany, P1S2-24 (2015).
  • [28] A. Ishizawa et al., Nucl. Fusion 57, 066010 (2017).