Plasma and Fusion Research

Volume 14, 1301143 (2019)

Letters


Simultaneous Measurements of Local Axial and Radial Momentum Fluxes near a Radial Wall of a Helicon Source
Takeharu SUGAWARA, Kazunori TAKAHASHI and Akira ANDO
Department of Electrical Engineering, Tohoku University, Sendai 980-8579, Japan
(Received 27 May 2019 / Accepted 10 July 2019 / Published 14 August 2019)

Abstract

Axial and radial momentum fluxes near a lateral wall in a helicon plasma source are preliminarily investigated by installing a momentum vector measurement instrument, which has a detector plate mounted on a double-pendulum structure movable in both the axial and radial directions. The result demonstrates the presence of the axial momentum flux transferred to the radial wall, which seems to be delivered by the ions having the axial velocity and lost to the wall. Furthermore, a significantly greater radial momentum flux is lost to the radial wall, implying that the energy loss occurs at the radial wall. The presently shown technique would be useful for identifying the spatial profile of the momentum vector of the plasma.


Keywords

helicon thruster, plasma momentum, momentum vector measurement

DOI: 10.1585/pfr.14.1301143


References

  • [1] D.L. Meier, S. Koide and Y. Uchida, Science 291, 84 (2001).
  • [2] T.E. Eastman, Geophys. Res. Lett. 3, 685 (1976).
  • [3] A.G. Peeters, C. Angioni and D. Strintzi, Phys. Rev. Lett. 98, 265003 (2007).
  • [4] K. Takahashi, Rev. Mod. Plasma Phys. 3, 3 (2019).
  • [5] S. Mazouffre, Plasma Sources Sci. Technol. 25, 033002 (2016).
  • [6] D.M. Goebel and I. Katz, Fundamentals of Electric Propulsion (A John Wiley and Sons, Inc., Hoboken, 2008) chap. 2.
  • [7] K. Takahashi, T. Lafleur, C. Charles, P. Alexander, R.W. Boswell, M. Perren, R. Laine, S. Pottinger, V. Lappas, T. Harle and D. Lamprou, Appl. Phys. Lett. 98, 141503 (2011).
  • [8] S. Pottinger, V. Lappas, C. Charles and R. Boswell, J. Phys. D: Appl. Phys. 44, 235201 (2011).
  • [9] K. Takahashi, T. Lafleur, C. Charles, P. Alexander and R.W. Boswell, Phys. Rev. Lett. 107, 235001 (2011).
  • [10] C. Charles, K. Takahashi and R.W. Boswell, Appl. Phys. Lett. 100, 113504 (2012).
  • [11] A. Shabshelowitz and A. Gallimore, J. Propul. Power 29, 919 (2013).
  • [12] L.T. Williams and M.L.R. Walker, J. Propul. Power 29, 520 (2013).
  • [13] T. Harle, S.J. Pottinger and V.J. Lappas, Plasma Sources Sci. Technol. 22, 015015 (2013).
  • [14] K. Takahashi, C. Charles and R.W. Boswell, Phys. Rev. Lett. 110, 195003 (2013).
  • [15] K. Takahashi, A. Chiba, A. Komuro and A. Ando, Phys. Rev. Lett. 114, 195001 (2015).
  • [16] K. Takahashi and A. Ando, Plasma Phys. Control. Fusion 59, 054007 (2017).
  • [17] A. Fruchtman, IEEE Trans. Plasma Sci. 36, 403 (2008).
  • [18] E. Ahedo and J. Navarro-Cavallé, Phys. Plasmas 20, 043512 (2013).
  • [19] T. Lafleur, Phys. Plasmas 21, 043507 (2014).
  • [20] K. Takahashi, Y. Takao and A. Ando, Appl. Phys. Lett. 108, 074103 (2016).
  • [21] Y. Takao and K. Takahashi, Phys. Plasmas 22, 113509 (2015).
  • [22] K. Takahashi, T. Sugawara, H. Akahoshi, Y. Takao and A. Ando, AIP Adv. 8, 105117 (2018).
  • [23] K. Takahashi, A. Komuro and A. Ando, Rev. Sci. Instrum. 86, 023505 (2015).
  • [24] K. Takahashi, C. Charles, R.W. Boswell, T. Kaneko and A. Ando, Phys. Plasmas 14, 114503 (2007).
  • [25] K. Takahashi, C. Charles, R.W. Boswell and A. Ando, Plasma Sources Sci. Technol. 23, 044004 (2014).