Plasma and Fusion Research

Volume 13, 1406125 (2018)

Regular Articles


Thermal Motion of Charged Particles in Confined Ensemble under Constant Electromagnetic Field
Olga S. VAULINA1,2), Evgeny A. LISIN1,2), Eduard A. SAMETOV1,2) and Rinat A. TIMIRKHANOV1)
1)
Joint Institute for High Temperatures RAS, 13 bd. 2 Izhorskaya st., Moscow 125412, Russia
2)
Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny 141701, Russia
(Received 3 September 2018 / Accepted 13 November 2018 / Published 21 December 2018)

Abstract

Thermal motion of charged particles in the field of electrostatic trap under an influence of constant magnetic field is investigated analytically and numerically. For the first time the conditions for energy balance of these particles in the systems with the spatially non-uniform thermal sources are proposed. The numerical simulations were carried out for the ensembles consisting of one to thousands of particles in a wide range of parameters of the analyzed systems. Comparisons of their spectral characteristics are presented. We found that the shape of the spectral density distributions in these systems is practically independent of the number of particles in the analyzed ensembles, and their characteristic frequencies can be obtained by an analytical solution of motion equations for a single charged particle.


Keywords

low temperature plasma, magnetic field, computer simulation, Langevin equation, electrostatic trap

DOI: 10.1585/pfr.13.1406125


References

  • [1] R.F. Post, Rev. Mod. Phys. 28, 338 (1956).
  • [2] L.A. Artsimovich, Controlled Thermonuclear Reactions (Gordon and Breach, 1964).
  • [3] R. Aymar, P. Barabaschi and Y. Shimomura, Plasma Phys. Control. Fusion 44, 519 (2002).
  • [4] A.V. Timofeev, Plasma Phys. Rep. 33, 890 (2007).
  • [5] V.A. Zhil'tsov, V.M. Kulygin, N.N. Semashko, A.A. Skovoroda, V.P. Smirnov, A.V. Timofeev, E.G. Kudryavtsev, V.I. Rachkov and V.V. Orlov, At. Energy 101, 755 (2006).
  • [6] A.I. Morozov, Introduction to Plasma Dynamics (CRC Press, 2012).
  • [7] B.P. Cluggish, F.A. Anderegg, R.L. Freeman, J. Gilleland, T.J. Hilsabeck, R.C. Isler, W.D. Lee, A.A. Litvak, R.L. Miller, T. Ohkawa, S. Putvinski, K.R. Umstadter and D.L. Winslow, Phys. Plasmas 12, 057101 (2005).
  • [8] N.A. Vorona, A.V. Gavrikov, A.A. Samokhin, V.P. Smirnov and Y.S. Khomyakov, Phys. At. Nucl. 78, 1624 (2015).
  • [9] V.P. Smirnov, A.A. Samokhin, N.A. Vorona and A.V. Gavrikov, Plasma Phys. Rep. 39, 456 (2013).
  • [10] Y.P. Raizer, V.I. Kisin and J.E. Allen, Gas Discharge Physics (Springer, 2011).
  • [11] J.I. Jiménez-Aquino, R.M. Velasco and F.J. Uribe, Phys. Rev. E 77, 051105 (2008).
  • [12] L.J. Hou, Z.L. Mišković, A. Piel and P.K. Shukla, Phys. Plasmas 16, 053705 (2009).
  • [13] B. Farokhi, M. Shahmansouri and P.K. Shukla, Phys. Plasmas 16, 063703 (2009).
  • [14] O.S. Vaulina, E.A. Lisin and E.A. Sametov, J. Exp. Theor. Phys. 125, 976 (2017).
  • [15] E.A. Sametov, R.A. Timirkhanov and O.S. Vaulina, Phys. Plasmas 24, 123504 (2017).
  • [16] Photon Correlation and Light Beating Spectroscopy, edited by H. Cummins (Springer Science & Business Media, 2013).
  • [17] A.A. Ovchinnikov, S.F. Timashev and A.A. Belyy, Kinetics of Diffusion Controlled Chemical Processes (Nova Science Publishers, 1989).
  • [18] O.S. Vaulina and E.A. Lisin, Phys. Plasmas 16, 113702 (2009).
  • [19] V.E. Fortov, O.F. Petrov, O.S. Vaulina and K.G. Koss, J. Exp. Theor. Phys. Lett. 97, 322 (2013).
  • [20] O.S. Vaulina, Phys. Plasmas 24, 023705 (2017).
  • [21] O.S. Vaulina, EPL (Europhysics Letters) 115, 10007 (2016).
  • [22] A.V. Timofeev and B.N. Shvilkin, Soviet Physics Uspekhi 19, 149 (1976).
  • [23] E.A. Lisin, O.S. Vaulina and O.F. Petrov, Phys. Plasmas 25, 013702 (2018).
  • [24] V.E. Fortov and G.E. Morfill, Complex and Dusty Plasmas (CRC Press, 2010), see Chapter 7, pp. 325-329.
  • [25] A.J. Lichtenberg and M.A. Lieberman, Regular and Chaotic Dynamics (Springer, New York, 1992).
  • [26] L.D. Landau and E.M. Lifshitz, Statistical Physics (Pergamon, Oxford, 1980).
  • [27] S.I. Krasheninnikov, V.I. Shevchenko and P.K. Shukla, Phys. Lett. A 361, 133 (2007).
  • [28] S.I. Krasheninnikov, R.D. Smirnov and D.L. Rudakov, Plasma Phys. Control. Fusion 53, 083001 (2011).