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Thermal motion of charged particles in the field of electrostatic trap under an influence of constant magnetic
field is investigated analytically and numerically. For the first time the conditions for energy balance of these
particles in the systems with the spatially non-uniform thermal sources are proposed. The numerical simulations
were carried out for the ensembles consisting of one to thousands of particles in a wide range of parameters of
the analyzed systems. Comparisons of their spectral characteristics are presented. We found that the shape of the
spectral density distributions in these systems is practically independent of the number of particles in the analyzed
ensembles, and their characteristic frequencies can be obtained by an analytical solution of motion equations for
a single charged particle.
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1. Introduction
Considerable interest in the studies of charged parti-

cle dynamics in external electromagnetic fields is defined
by development of effective power installations for Con-
trolled Thermonuclear Fusion (CTF) [1–3], and also of
methods for plasma reprocessing of Spent Nuclear Fuel
(SNF) and Radioactive Wastes (RAW) [4–9]. Spent nu-
clear fuel (SNF), occasionally called used nuclear fuel, is
nuclear fuel that has been irradiated in a nuclear reactor
(usually at a nuclear power plant). A reprocessing of SNF
and RAW needed for nuclear fuel cycle closure for the pur-
pose of more complete involvement of the resources is ac-
tual problem for nuclear industry [4–9].

An influence of the thermal motions of charged par-
ticles on their dynamics in the external electric, and mag-
netic fields is of special interest too [10–15]. Thermal mo-
tions have a significant influence on the dynamics of inter-
acting particles in natural systems, as well as in the biolog-
ical and polymer colloid suspensions, in plasmas of com-
bustion products, in the Earth atmosphere and other me-
dia [16,17]. Nevertheless, the simple analytical approaches
are developed for two cases only: for the non-interacting
grains and for a single charged particle in a field of the trap.
The analysis of these problems does not allow to investi-
gate an influence of the number, N, of interacting particles
(N > 1) on the characteristics of their motion. For this
purpose a numerical simulation is commonly used.

The trajectories and mean square displacements of a
single Brownian grain in an electrostatic trap under the in-
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fluence of magnetic field were studied in Refs. [11–13].
Experimental and numerical analyses of the dynamics of
an ensemble of interacting Brownian dust particles in
the electric fields which are formed in the gas discharge
plasma were presented in Refs. [18, 19]. An influence of
the stochastic (thermal) motion in the clouds of charged
particles on their dynamics in the constant electromagnetic
fields was recently studied in Refs. [14, 15].

Note also the possibility of non-uniform distributions
of the stochastic kinetic energy on degrees of freedom (for
example, due to inhomogeneous parameters of the ana-
lyzed systems) for ions/electrons of a plasma or charged
dust grains in gas discharges [10, 20–22]. The redistribu-
tion of the stochastic kinetic energy for systems of charged
particles with such non-uniform thermal sources in the ab-
sence of magnetic fields was studied in detail in Refs. [20]
and [21]. (Here and below “the thermal sources” are the
sources of the stochastic energy of particles with the ve-
locities corresponding to the Maxwell function.)

In this paper, thermal motion of charged particles in
the field of electrostatic trap under an influence of constant
magnetic field is investigated analytically and numerically.
For glow gas discharges without magnetic field, B = 0,
the concentration of positive ions can excess the electron
concentration in the center of the discharge chambers [10].
This leads to the formation of effective traps for negatively
charged particles (e.g., for dust particles) [18, 19].

According to the Poisson equation, in case of violation
of the plasma electro-neutrality (due to the predominance
of concentration of its positive or negative component), the
arising electric field restricts the motion of particles of the
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opposite sign [18, 19, 24]. Thus, the confinement fields are
formed, which are a trap for these particles.

In the plasma with the magnetic field, B � 0, the situa-
tion in the center of the gas discharge chamber may be dif-
fered (due to the “magnetization” of the plasma electrons),
i.e., there can be conditions for the retention of positively
charged particles. Thus, the presence of electrostatic trap
for positive ions and/or for any positively charged parti-
cles in installations for the separation of SNF components
may occur due to the “magnetization” of electrons on the
axes of the discharge chambers, which are typically used
for these purposes [7, 8].

In the Sec. 2 of this paper the results of analytical stud-
ies of dynamics of single charged particles in the field of
the electrostatic trap under the influence of magnetic fields
are presented. Analysis of the frequency spectrum of their
oscillations is performed. In the Sec. 3 the conditions for
an energy balance of the systems in the presence of spa-
tially non-uniform thermal sources are studied.

In the Sec. 4 the results of numerical simulations for
systems consisting of one (N = 1) to N ∼ 1000 charged
particles are described for a wide range of parameters of
these systems. Calculations were performed for ions with
the charge number Z = 1 and atomic masses of M1 = 50
a.m.u. and M2 = 150 a.m.u. that simulated the fission prod-
ucts of uranium [8, 9]. The friction coefficients of these
ions, ν, due to their collisions with gas neutrals ranged
from ∼ 8000 s−1 to ∼ 80000 s−1, which correspond to
the buffer gas pressure (like argon and helium) ∼ 1 mTorr
and ∼ 10 mTorr, respectively. It should be noted that
these types of gases with similar pressures can be used
for plasma separation facilities of SNF and RAW compo-
nents [7, 8].

2. Dynamics of Charged Particles in
Electromagnetic Field
For the analysis of the dynamics of particles in the

constant electromagnetic fields we consider the motion
equations (Langevin equations) for a single charged parti-
cle with mass M and charge Q in the external electric field
E = [Ex; Ey; Ez] of electrostatic trap and in the magnetic
field with induction B = By (which is directed along the y-
axis) under an action of random force Fb = [Fbx; Fby; Fbz]
that is the source of the stochastic (thermal) energy:

dVy/dt = −νVy − Qαyy/M + Fby/M, (1a)

dVx/dt = −νVx − Qαxx/M + QBVz/M + Fbx/M, (1b)

dVz/dt = −νVz − Qαzz/M − QBVx/M + Fbz/M. (1c)

Here y, x, z are displacements of the particle from its equi-
librium position; Vy = dy/dt, Vx = dx/dt, Vz = dz/dt
are the components of the particle velocity; αy, αx, αz are
the components of gradients of the external electric field
for different degrees of freedom, B = By is the value of
magnetic field induction, and ν is the friction coefficient

(reverse deceleration time) for the charged particles due to
their collisions with neutrals of surrounding gas.

It is obvious that the motion of a charged particle
along the magnetic field (see Eq. (1a)) is stable for the case
ν > 0 and Qαy > 0. The characteristic equation for the
system of Eqs. (1b), (1c) has the form

λ4 + 2νλ3 + (ν2 + ωB
2 + Q{αx + αz}/M)λ2 +

+ νQ(αz + αx)λ/M + Q2αzαx/M
2 = 0. (2)

Here ωB = QB/M is the cyclotron frequency.
A particle motion in the plane orthogonal to the mag-

netic field will be stabile if the Routh-Hurwitz criteria are
satisfied. In the case of αx = αz ≡ α, a solution of the
system of Eqs. (1b) and (1c) is always stable for ν > 0 and
Qα > 0.

The roots of the characteristic Eq. (2) for αx = αz ≡ α
can be written as

λ1,2 = −Ψ1 ± iΩ1, (3)

λ3,4 = −Ψ2 ± iΩ2, (4)

where Ψ1 = ν(1 + D1/
√

2)/2, Ψ2 = ν(1 − D1/
√

2)/2, Ω1 =

(ωB + νD2/
√

2)/2, Ω2 = (ωB − νD2/
√

2)/2,

D1 =

[(
(1 − (ωB/ν)

2 − 4(ωt/ν)
2)2 + 4(ωB/ν)

2
)1/2
+

+1 − (ωB/ν)
2 − 4(ωt/ν)

2
]1/2
, (5a)

D2 =

[(
(1 − (ωB/ν)

2 − 4(ωt/ν)
2)2 + 4(ωB/ν)

2
)1/2−

−1 + (ωB/ν)
2 + 4(ωt/ν)

2
]1/2
. (5b)

Here ωt = (Qα/M)1/2 is the characteristic frequency of the
electric trap.

The imaginary parts of the roots of Eqs. (3), (4) are re-
sponsible for the characteristic frequencies of particle os-
cillation (Ω1, Ω2) in the direction transverse to the mag-
netic field.

In the case ofωB = 0 the roots of Eq. (2) for αx = αz ≡
α have the well-known form:

λ1,2 = −ν/2 ± iΩt, (6)

where Ωt = (ωt
2 − ν2/4)1/2.

Note that the system of Eqs. (1a) - (1c) can be used to
analyze the motion of the center of mass of any finite en-
semble of charged particles with pairwise interparticle in-
teractions and also for weakly non-ideal systems with the
coupling parameter Γ = Q2n−1/3/T � 1, where n is the
concentration of charged particles and T is their kinetic
temperature.

3. Energy Balance Condition
We consider the energy balance conditions in the sys-

tem of Eqs. (1b) - (1c), taking into account that for the case
of stochastic motion of particles: 〈Fbx〉 = 〈Fbz〉 ≡ 0,
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〈xFbx〉 = 〈zFbz〉 ≡ 0, 〈xVx〉 = 〈zVz〉 ≡ 0, 〈xVz〉+ 〈zVy〉 = 0,
〈VxFbx〉 = νTx

o and 〈VzFbz〉 = νTz
o, where Tx

o, Tz
o are the

temperatures of thermal sources for the respective degrees
of freedom [16, 17]. (Here and below, the angle brackets
〈 〉 denote time averaging at t → ∞).

Then, we rewrite the system of Eqs. (1b) - (1c), using
the method of correlations [16, 17, 23]:

0.5d(Tx + Tz)/dt = −ν(δTx + δTz), (7a)

0.5d(Tx − Tz)/dt = −ν(δTx − δTz) − 2ωB〈VxVz〉M, (7b)

Md〈VxVz〉/dt = −2ν〈VxVz〉M − ωB(Tx − Tz), (7c)

where Tx = M〈Vx
2〉, Tz = M〈Vz

2〉 are the doubled val-
ues of the equilibrium stochastic kinetic energy for the re-
spective degrees of freedom in the plane orthogonal to the
direction of the magnetic field B; and δTx = Tx

o − Tx,
δTz = Tz

o − Tz.
Procedure of the transformation of Eqs. (1b), (1c) into

the system of Eqs. (7a) - (7c) with a use of the correla-
tors, presented in beginning of this Section, was detailed
in a set of the works [16, 17, 23]. So, we multiply the
Eq. (1b) by the value of Vx, and we multiply the Eq. (1c)
by Vz, respectively. Then we average these equations us-
ing the above-mentioned correlators. The sum of the trans-
formed equations (i.e. multiplied and averaged Eqs. (1b) -
(1c)) is the Eq. (7a); and their difference is the Eq. (7b).
Then we multiply the Eq. (1b) by Vz and we multiply the
Eq. (1c) by the value of Vx; we average these equations
using the above-mentioned correlators. The sum of these
transformed equations will give, respectively, the Eq. (7c).

Thus, by solving the system of Eqs. (7a) - (7c), the
equation of energy balance for the system of Eqs. (1b) -
(1c) with an additional stochastic energy, Tx

o � Tz
o, aris-

ing due to any physical processes, can be represented as:

δTx ≡ −δTz = 0.5ωB
2(Tx

o − Tz
o)/(ν2 + ωB

2). (8)

Notice that Eq. (8) was obtained by a simple solving
the system of Eqs. (7a) - (7c) for the case of equilibrium
systems, when the values of Tx, Tz, 〈VxVz〉 are indepen-
dent on time; i.e. the left parts of Eqs. (7a) - (7c) containing
derivatives of these values are equal to 0.

It is readily seen that δTx ≡ −δTz = 0 in the case
ωB = 0 and/or δTx ≡ −δTz → 0 for ν � ωB. In the
opposite case (ν � ωB) the additional stochastic energies
will be uniformly redistributed between the corresponding
degrees of freedom.

4. Results of Numerical Calculations
and Their Discussion
The numerical simulation was performed for the sys-

tems consisting of from one (N = 1) to N = 1000 charged
particles in isotropic electrostatic trap (αx = αz = αy ≡ α)
under the influence of a constant magnetic field, B = By by
three-dimensional Langevin molecular dynamic method.
This method based on the solution of the system of 3 N-
differential equations of motion which included the forces

of pair inter-particle interaction, external electrical and
magnetic forces and the random force Fb that is the source
of the stochastic (thermal) motion of particles [16, 17, 24].
The latter takes into account processes leading to the es-
tablished equilibrium kinetic temperature T of particles
that characterizes kinetic energy of their stochastic (ther-
mal) motion according the fluctuation-dissipation theorem
[25, 26]. The simulation technique is detailed in Ref. [24].

For correct simulations the integration step was
varied from Δt � (40 max[ωB; ωt; ν])−1 to Δt �
(100 max[ωB; ωp; ν])−1 depending on the initial con-
ditions. The computation time tc after the establish-
ment of equilibrium in the simulated systems was from
∼ 103/min[ωB; ωt; ν] to ∼ 104/min[ωB; ωt; ν].

The calculations were performed for ions of atomic
masses M1 = 50 a.m.u. and M2 = 150 a.m.u., with the
charge number Z = 1 and at the room temperature (T �
0.025 eV) and at the temperature T � 0.077 eV. In the lat-
ter case, we took into account the possible heating of the
buffer gas [21]. The friction coefficient for ions, ν, was var-
ied from ∼ 8000 s−1 to 80000 s−1. The magnetic induction,
B = By, was in the range from 200 G to 2000 G; the value
of gradients of external electric field, α, was changed from
∼ 0.1 V/cm2 to ∼ 1000 V/cm2. The average ion concen-
tration, n, near the trap center for N > 100 was changed
from ∼ 104 cm−3 to ∼ 108 cm−3 depending on the value
of electric field gradient, α, and on the number of parti-
cles, N, in the simulated ensembles. Estimation of the
coupling parameter, Γ, for the simulated systems yields:
Γ = Q2n−1/3/T � 1.

In all cases the simulated systems were stable. The
temperatures of particles did not differ from the pre-
set points, and the velocity distribution functions corre-
sponded to the Maxwell functions. The mean square dis-
placements of particles at all degrees of freedom were al-
most equal: 〈x2〉 � 〈y2〉 � 〈z2〉 ≈ T/(Mωt

2).
Trajectories of individual particles of the ensembles

in the plane orthogonal to the magnetic field B and in the
plane parallel to B, were some different. So, the motions
of charged particles in the direction of magnetic field were
close to the oscillating motions with the frequency close to
ωt for 2ωt � ν. While in the plane orthogonal to B, the
marked rotational motions were observed. A similar result
was obtained earlier for the case of a single particle [11,
12].

The trajectories of an arbitrary selected ion (i.e. an ion
chosen randomly from a simulated system consisting of N
− particles (ions)) in the ensemble of N = 500 ions with
M = M1, Ωt/ν � 18.27, ωB/ν � 28.35 and ν = 8000 s−1

are presented in Figs. 1 (a), 1 (b) in [x, y] and [x, z] planes,
respectively. The displacements of an arbitrary selected
ion as function of Ωtt in y and x directions, as well as the
results of spectral analysis of its displacements are shown
in Figs. 2 (a), 2 (b) and 2 (c), respectively. Illustration of
spectral analysis for one ion with M = M2 and for the mass
center of the ensemble of N = 1000 ions with M = M2,
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Ωt/ν � 6.14, ωB/ν � 15.07, ν = 8000 s−1 are presented in
Figs. 3 (a), 3 (b).

When the value of B = By changes, the value of ωB =

QB/M (the cyclotron frequency) changes too. The results
of numerical simulation for different frequencies ωB due
to the change in the magnetic field, B = By, are shown in
Figs. 2, 3 (see figure captions).

It is easy to see that the frequency spectra of the ar-
bitrary selected ions and of the ensemble mass center cor-
respond well to the harmonics Ωt and Ω1, Ω2, which were
obtained by solving the system of Eqs. (1a) - (1c) for the
case of a single particle in the electric trap, see Table 1.

The energy balance of charged particles in exter-
nal constant electromagnetic field is studied. The results
of simulations for the systems with non-uniform thermal

Fig. 1 Trajectories of an arbitrary selected ion in the ensemble
of N = 500 ions with M = M1 in the plane [x, y] (a) and
in the plane [x, z] (b) over the time ∼ 1/ωB for Ωt/ν �
18.27, ωB/ν � 28.35 and ν = 8000 s−1.

Fig. 2 The displacements of an arbitrary selected ion in the ensemble of N = 500 ions with M = M1 as a function of Ωtt in the y direction
(a) and in x direction (b), as well as the results of spectral analysis of its displacements (c) for Ωt/ν � 18.27, ωB/ν � 28.35,
ν = 8000 s−1. Here fx

∗ (light gray line) and fy∗ (dark gray line) are the normalized spectral density of the selected ion in the x and
y directions, respectively.

sources of energy have shown that in all analyzed cases
the condition of balance (see Eq. (8)) is valid.

With an increase of the value of B = By, the value
of the cyclotron frequency (ωB = QB/M) increases too.
The ratio of δT/ΔT , obtained by numerical simulation for
different values of B = By, as function of ωB/ν (where
δT = |δTx| ≡ |δTz|, ΔT = |Tx

o − Tz
o|) for a single parti-

cle (N = 1) and for ensemble of N = 1000 particles are
presented in Fig. 4 for ν = 8000 s−1. Thus, under certain
conditions (with an increase of B = By, for ωB � ν, see
Sec. 3 and Fig. 4), the application of a constant magnetic
field can be used as a method of equalizing the stochastic
kinetic energy in the plane perpendicular to the vector B.

The results of solution for a single charged particle is
presented in Fig. 5 for ωt/ν � 18.27, ωB/ν � 28.35, ν =
8000 s−1 with Tx

o ≡ Tyo � 0.077 eV and Tz
o � 0.025 eV.

The temperature of the sources (Tx
o, Tyo, Tz

o) was set by a
random force Fb [24] (see the beginning of the Sec. 2).

In the last case, the equilibrium velocity distributions
of the particle in all degrees of freedom are the Maxwell
functions. In the direction of B, the velocities of par-
ticles corresponding to the Maxwell function is equal to
the preset temperature of the thermal source (Ty = Tyo �
0.077 eV), while in the transverse directions (across B) the
Maxwell functions are characterized by the following tem-
peratures: Tx � Tz � 0.051 eV.

In conclusion of this section, we note that a solution
of Eqs. (1a) - (1c) at the given friction coefficient, ν, and
temperatures depends only on the relative values of ωt/ν

and ωB/ν. Thus, the results obtained in this section are
valid for particles of any mass and charges, for example,
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Fig. 3 The normalized spectral density of an arbitrary selected ion (a) and of the mass center (b) of the ensemble consisting of N = 1000
ions with M = M2, Ωt/ν � 6.14, ωB/ν � 15.07 and ν = 8000 s−1. Light gray and dark gray lines correspond to the spectral density
fx
∗, fy∗ in the x and y directions.

Table 1 Parameters Ψ1, Ψ2, Ω1, Ω2 of the roots of Eq. (2) for
the solution of Eqs. (1b), (1c) with ν = 8000 s−1 and the
given values of Ωt/ν, ωB/ν.

Fig. 4 The ratio of δT/ΔT as function of ωB/ν, where δT =
|δTx| ≡ |δTz| and ΔT = |Tx − Tz|. Solid line is Eq. (8);
the symbols are the numerical simulation results for: © –
N = 1, Δ – N = 1000.

Fig. 5 The velocity distribution function f (V) for a single
charged particle in the y (thin line), x (bold line) and z
(symbols) directions for the following conditions of the
simulation: ωt/ν � 5.78, ωB/ν � 28.35, ν = 8000 s−1,
Tx

o ≡ Tyo � 0.077 eV and Tz
o � 0.025 eV. After

the establishment of equilibrium in the simulated system:
Tx � Tz � 0.051 eV, Ty � 0.077 eV.

for the case of weakly non-ideal dusty plasma, etc. [27,28].
(Dusty plasma is an ionized gas with charged particles of
micron-sized substance. This plasma is widespread in na-
ture and is formed in a number of technological processes;
it is weakly non-ideal when the coupling parameter of sys-
tem Γ < 1 [24, 27, 28].)
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5. Conclusions
We performed analytical and numerical studies of the

dynamics of confined ensembles of charged particles in the
constant electromagnetic fields. The roots of the character-
istic equation that allow analyzing the frequency spectrum
in these systems were presented. For the first time the con-
ditions for energy balance of these systems with the spa-
tially non-uniform thermal sources were proposed.

Numerical simulation was carried out for systems
consisting of from one to thousands of charged particles.
Trajectories, velocity distribution of these particles and
spectral density in analyzed systems were obtained. Con-
ditions of the energy balance were studied. The spectral
characteristics of the simulated systems were compared.
We found that the shape of the spectral density distribution
practically does not depend on the number of particles in
the analyzed ensembles, and their characteristic frequen-
cies can be obtained by an analytical solution of the motion
equations for a single charged particle. Numerical simu-
lations of the systems with non-uniform thermal sources
have shown that the proposed balance condition is valid
for all considered cases.

In conclusion, the obtained results can be used for an
estimation of optimal operating parameters of power in-
stallations for the effective separation of SNF. In addition,
the presented results can be useful for qualitative analy-
sis of the dynamics of weakly non-ideal dusty plasma with
grains of any mass and charges in a constant electromag-
netic field.
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