Plasma and Fusion Research

Volume 13, 1405112 (2018)

Regular Articles

Measuring Faraday Effect in Z-Cut Crystal Quartz at Wavelength of 118.8 μm for Polarimeter
Ryota IMAZAWA, Kazuya NAKAYAMA1) and Tsuyoshi AKIYAMA2)
National Institute for Quantum and Radiological Science and Technology, 801-1 Mukoyama, Naka, Ibaraki 311-0193, Japan
Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292, Japan
(Received 14 June 2018 / Accepted 15 August 2018 / Published 25 September 2018)


Faraday rotation angle in Z-cut crystal quartz at a wavelength of 118.8 μm was measured for the first time. Z-cut crystal quartz is used in vacuum windows of polarimeters for plasma diagnostics that use far-infrared light. ITER poloidal polarimeter uses double vacuum windows of 10-mm Z-cut crystal quartz discs in compliance with nuclear safety. According to the Becquerel model, thick Z-cut crystal quartz may lead to non-negligible Faraday rotation that must be compensated for to measure the pure polarization change attributable to the plasma. For the first time, this paper measures Faraday rotation at the wavelength of 118.8 μm by means of the rotating linear polarizer method. The Becquerel model is not applicable at the wavelength of 118.8 μm and Faraday rotation resulting from the Z-cut quartz vacuum window is negligible even with a magnetic field of 0.3 T and a 10-mm thick vacuum window.


Faraday rotation, Faraday effect, Verdet constant, ITER, polarimeter, Z-cut crystal, quartz, Becquerel model

DOI: 10.1585/pfr.13.1405112


  • [1] T. Akiyama, E. Sato, T. Nozawa, S. Tsuji-Iio, R. Shimada, H. Murayama, K. Nakayama, S. Okajima, K. Tanaka, K. Watanabe, T. Tokuzawa and K. Kawahata, Rev. Sci. Instrum. 72, 1073 (2001).
  • [2] R. Imazawa, Y. Kawano and Y. Kusama, Nucl. Fusion 51, 113022 (2011).
  • [3] H. Soltwisch, Rev. Sci. Instrum. 57, 1939 (1986).
  • [4] Y. Kawano, S. Chiba and A. Inoue, Rev. Sci. Instrum. 72, 1068 (2001).
  • [5] A. Boboc, M. Gelfusa, A. Murari and P. Gaudio, Rev. Sci. Instrum. 81, 10D538 (2010).
  • [6] C.H. Ma, D.P. Hutchinson, K.L.V. Sluis, D.K. Mansfield, H. Park and L.C. Johnson, Rev. Sci. Instrum. 57, 1994 (1986).
  • [7] M.A.V. Zeeland, R.L. Boivin, T.N. Carlstrom and T.M. Deterly, Rev. Sci. Instrum. 79, 10E719 (2008).
  • [8] C. Gil, D. Elbeze, A. Beraud, B. Echard, J. Patterlini, J. Philip, L. Toulouse, M. Lipa and A. Litnovsky, Fusion Eng. Des. 82, 1238 (2007). Proceedings of the 24th Symposium on Fusion Technology.
  • [9] W.F. Bergerson, P. Xu, J.H. Irby, D.L. Brower, W.X. Ding and E.S. Marmar, Rev. Sci. Instrum. 83, 10E316 (2012).
  • [10] H.K. Park, C.W. Domier, W.R. Geck and N.C.L. Jr., Rev. Sci. Instrum. 70, 710 (1999).
  • [11] Z.Y. Zou, H.Q. Liu, Y.X. Jie,W.X. Ding, D.L. Brower, Z.X. Wang, J.S. Shen, Z.H. An, Y. Yang, L. Zeng, X.C. Wei, G.S. Li, X. Zhu and T. Lan, Rev. Sci. Instrum. 85, 11D409 (2014).
  • [12] J. Chen, L. Gao, G. Zhuang, Z.J. Wang and K.W. Gentle, Rev. Sci. Instrum. 81, 10D502 (2010).
  • [13] A. Mlynek, L. Casali, O. Ford and H. Eixenberger, Rev. Sci. Instrum. 85, 11D408 (2014).
  • [14] C. Fuchs and H.J. Hartfuss, Phys. Rev. Lett. 81, 1626 (1998).
  • [15] T. Akiyama, K. Kawahata, Y. Ito, S. Okajima, K. Nakayama, S. Okamura, K. Matsuoka, M. Isobe, S. Nishimura, C. Suzuki, Y. Yoshimura, K. Nagaoka and C. Takahashi, Rev. Sci. Instrum. 77, 10F118 (2006).
  • [16] H.J. Gardner and J. Howard, Plasma Phys. Control. Fusion 36, 245 (1994).
  • [17] B.H. Deng, D.L. Brower, W.X. Ding, M.D. Wyman, B.E. Chapman and J.S. Sarff, Rev. Sci. Instrum. 77, 10F108 (2006).
  • [18] E. Zilli, M. O'Gorman, L. Giudicotti, F. Milani, S.L. Prunty, A. Murari and A. Boboc, Int. J. Infrared Millim. Waves 21, 1673 (2000).
  • [19] J.H. Rommers, A.J.H. Donne, F.A. Karelse and J. Howard, Rev. Sci. Instrum. 68, 1217 (1997).
  • [20] S.E. Segre, Plasma Phys. Control. Fusion 32, 1249 (1990).
  • [21] R. Imazawa, Y. Kawano and K. Itami, Proc. 26th Fusion Enegy Conference, (Kyoto, Japan), FIP/P4-5 (2016).
  • [22] R. Serber, Phys. Rev. 41, 489 (1932).
  • [23] S. Ramaseshan, Proceedings of Indian Academy of Sciences 24, 426 (1946).
  • [24] E.E. Russell and E.E. Bell, J. Opt. Soc. Am. 57, 341 (1967).
  • [25] P. Maquet, C.Walker, R. Barnsley, L. Bertalot, A. Encheva, C. Pitcher, R. Reichle, G. Vayakis, E. Veshchev, V. Udintsev, M. Walsh, C. Watts, K. Patel, T. Giacomin, S. Hughes, N. Taylor, R. Pearce and K. Okayama, Fusion Eng. Des. 88, 2641 (2013). Proceedings of the 27th Symposium On Fusion Technology (SOFT-27); Liege, Belgium, September 24-28 (2012).
  • [26] G. Federici, W. Biel, M. Gilbert, R. Kemp, N. Taylor and R. Wenninger, Nucl. Fusion 57, 092002 (2017).
  • [27] S. Okajima, K. Nakayama, H. Tazawa, K. Kawahata, K. Tanaka, T. Tokuzawa, Y. Ito and K. Mizuno, Rev. Sci. Instrum. 72, 1094 (2001).
  • [28] F.A. Reich, O. Stahn and W.H. Müller, Continuum Mechanics and Thermodynamics 28, 1435 (2016).
  • [29] M. Born and E. Wolf, eds., Principles of Optics 7th ed., (Cambridge, UK: Cambridge University Press, 1999).