Plasma and Fusion Research

Volume 12, 1403047 (2017)

Regular Articles


Cyclotron Electromagnetic Instabilities in a Laboratory Dipole Magnetospheric Plasma with bi-Kappa Distributions
Nikolay GRISHANOV1,2), Nikolay AZARENKOV1) and Marian LAZAR3,4)
1)
Kharkiv National University by V.N. Karazin, Kharkiv, Ukraine
2)
Ukrainian State University of Railway Transport, Kharkiv, Ukraine
3)
Centre for Mathematical Plasma Astrophysics, University of Leuven, Belgium
4)
Theoretical Physics IV, Ruhr University Bochum, Germany
(Received 31 July 2017 / Accepted 12 October 2017 / Published 28 November 2017)

Abstract

The transverse dielectric susceptibility elements are derived for electromagnetic cyclotron waves in an axisymmetric laboratory dipole magnetosphere accounting for the cyclotron and bounce resonances of trapped and untrapped particles. A bi-Kappa (or bi-Lorentzian) distribution function is invoked to model the energetic particles with anisotropic temperature. The steady-state two-dimensional (2D) magnetic field is modeled by laboratory dipole approximation for a superconducting ring current of finite radius. Derived for field-aligned circularly-polarized waves the dispersion relations are suitable for analyzing both the whistler instability in the range below the electron-cyclotron frequency, and the proton-cyclotron instability in the range below the ion-cyclotron frequency. The instability growth rates in the 2D laboratory magnetosphere are defined by the contributions of energetic particles to the imaginary part of transverse susceptibility.


Keywords

laboratory dipole magnetosphere, anisotropic temperature, trapped and untrapped particles, bi-Kappa distribution, cyclotron wave

DOI: 10.1585/pfr.12.1403047


References

  • [1] A. Hasegawa, Comments Plasma Phys. Control. Fusion 11, 147 (1987).
  • [2] J. Kesner and M. Mauel, Plasma Phys. Reports 23, 742 (1997).
  • [3] D.T. Garnier, A.C. Boxwer, J.L. Ellsworth et al., Nucl. Fusion 49, 055023 (2009).
  • [4] Z. Yoshida, Y. Ogawa, J. Morikawa et al., Plasma Fusion Res. 1, 008 (2006).
  • [5] M. Nishiura, Z. Yoshida, H. Saitoh et al., Nucl. Fusion 55, 053019 (2015).
  • [6] M. Nishiura, Z. Yoshida, Y. Yano et al., Plasma Fusion Res. 11, 2402054 (2016).
  • [7] Y. Kawazura, Z. Yoshida, M. Nishiura et al., Phys. Plasmas 22, 112503 (2015).
  • [8] R.Z. Sagdeev and V.D. Shafranov, Sov. Physics, JETP, English Transl. 12, 130 (1961).
  • [9] J.M. Cornwall, J. Geophys. Res. 70, 61 (1965).
  • [10] C.F. Kennel and H.E. Petschek, J. Geophys. Res. 71, 1 (1966).
  • [11] S. Cuperman, Rev. Geophys. 19, 307 (1981).
  • [12] L. Gomberoff and R.J. Neira, J. Geophys. Res. 88, 2170 (1983).
  • [13] J.A. Bittencourt, Fundamentals of Plasma Physics (Pergamon Press, 1986).
  • [14] S.P. Gary, Theory of Space Plasma Microinstabilities (Cambridge Univ. Press, 1993).
  • [15] D. Summers and R.M. Thorne, J. Geophys. Res. 97, 16827 (1992).
  • [16] S. Xue, R.M. Thorne and D. Summers, J. Geophys. Res. 101, 15457 (1996); J. Geophys. Res. 101, 15467 (1996).
  • [17] R.L. Mace, J. Geophys. Res. 103, 14643 (1998).
  • [18] M. Lazar, R. Schlickeiser, S. Poedts and R. Tautz, Mon. Not. R. Astron. Soc. 390, 168 (2008).
  • [19] M. Lazar, S. Poedts and M.J. Michno, Astron. Astrophys. A64, 554 (2013).
  • [20] M. Lazar, Astron. Astrophys. A94, 547 (2012).
  • [21] M. Lazar, S. Poedts and R. Schlickeiser, Mon. Not. R. Astron. Soc. 410, 663 (2011).
  • [22] M. Lazar and S. Poedts, Mon. Not. R. Astron. Soc. 437, 641 (2011).
  • [23] N.I. Grishanov, A.F.D. Loula, C.A. de Azevedo and J. Pereira Neto, Contrib. Plasma Phys. 46, 265 (2006).
  • [24] N.I. Grishanov and N.A. Azarenkov, Plasma Phys. Control. Fusion 51, 125004 (2009).
  • [25] V. Pierrard and M. Lazar, Sol. Phys. 267, 153 (2010).
  • [26] M. Lazar, R. Schlickeiser and S. Poedts, in Exploring the Solar Wind, ed. M. Lazar, Ch. 11 (Intech, 2012).
  • [27] N.I. Grishanov, M.A. Raupp, A.F.D. Loula and J. Pereira Neto, Ann. Geophys. 24, 589 (2006).