Plasma and Fusion Research

Volume 12, 1303035 (2017)

Letters


A Reduced Transport Model for Ion Heat Diffusivity by Gyro-Kinetic Analysis with Kinetic Electrons in Helical Plasmas
Shinichiro TODA, Motoki NAKATA, Masanori NUNAMI, Akihiro ISHIZAWA1), Tomo-Hiko WATANABE2) and Hideo SUGAMA
National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292, Japan
1)
Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
2)
Department of Physics, Nagoya University, Furo-cho, Nagoya, Aichi 464-8602, Japan
(Received 14 April 2017 / Accepted 27 July 2017 / Published 30 August 2017)

Abstract

A high ion temperature plasma in the Large Helical Device is examined in the case in which the ion temperature gradient mode is unstable. The nonlinear gyro-kinetic simulation is performed to evaluate the turbulent ion heat diffusivity with the kinetic electron response. It is clarified that the decay time of zonal flows [S. Ferrando-Margalet et al., Phys. Plasmas 14, 122505 (2007)] decreases radially outward due to the trapped electron and the ion energy transport increases outward. To reduce the computational cost for applying to the dynamical transport simulation, an extended transport model for the ion heat diffusivity in terms of the mixing length estimate and the characteristic quantity for the linear response of zonal flows is proposed.


Keywords

transport model, zonal flow, gyro-kinetic simulation, turbulence, helical plasma

DOI: 10.1585/pfr.12.1303035


References

  • [1] J.W. Connor and H.R. Wilson, Plasma Phys. Control. Fusion 36, 719 (1994).
  • [2] X. Garbet et al., Nucl. Fusion 50, 0433002 (2010).
  • [3] F. Jenko and W. Dorland, Plasma Phys. Control. Fusion 43, A141 (2001).
  • [4] J. Candy and R.E. Waltz, J. Comput. Phys. 186, 545 (2003).
  • [5] T.-H. Watanabe, H. Sugama and S. Ferrando-Margalet, Nucl. Fusion 47, 1383 (2007).
  • [6] P. Xanthopoulos et al., Phys. Rev. Lett. 99, 035002 (2007).
  • [7] M. Nunami et al., Plasma Fusion Res. 6, 1403001 (2011).
  • [8] A. Ishizawa et al., Phys. Plasmas 21, 055905 (2014).
  • [9] M. Kotschenreuther et al., Phys. Plasmas 2, 2381 (1995).
  • [10] C. Holland et al., Phys. Plasmas 18, 056113 (2011).
  • [11] T.L. Rhodes et al., Nucl. Fusion 51, 063022 (2011).
  • [12] H.E. Mynick, N. Pomphrey and P. Xanthopoulous, Phys. Rev. Lett. 105, 0950094 (2010).
  • [13] M. Nunami et al., Phys. Plasmas 19, 042504 (2012).
  • [14] M. Nunami, T.-H. Watanabe and H. Sugama, Phys. Plasmas 20, 092307 (2013).
  • [15] T.-H. Watanabe and H. Sugama, Nucl. Fusion 46, 24 (2006).
  • [16] K. Tanaka et al., Plasma Fusion Res. 5, S2053 (2010).
  • [17] H. Sugama and T.-H. Watanabe, Phys. Plasmas 13, 012501 (2006).
  • [18] S. Ferrando-Margalet, H. Sugama and T.-H. Watanabe, Phys. Plasmas 14, 122505 (2007).
  • [19] J. Candy et al., Phys. Plasmas 16, 060704 (2009).
  • [20] M. Barnes et al., Phys. Plasmas 17, 056109 (2010).
  • [21] S. Toda et al., J. Phys.: Conf. Ser. 561, 012020 (2014).
  • [22] A. Ishizawa et al., Nucl. Fusion 55, 043024 (2015).
  • [23] A. Ishizawa et al., Nucl. Fusion 57, 066010 (2017).
  • [24] J. Wesson, Tokamaks, 2nd ed. (Oxford University Press, 1997) p.198.
  • [25] T.-H. Watanabe, H. Sugama and S. Ferrando-Margalet, Phys. Rev. Lett. 100, 195002 (2008).
  • [26] M. Nakata et al., 25th IAEA Fusion Energy Conference 13-18 Oct. St. Petersburg, Russian Federation, TH/P-38 (2014).