[Table of Contents]

Plasma and Fusion Research

Volume 10, 3403055 (2015)

Regular Articles


A Verification Scenario of Nuclear Plus Interference Scattering Effects Using Neutron Incident Angle Distribution to the Wall in Beam-Injected Deuterium Plasmas
Shota SUGIYAMA, Hideaki MATSUURA, Daisuke Uchiyama, Daisuke SAWADA, Tsuguhiro WATANABE1), Osamu MITARAI2) and Takuya GOTO1)
Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
1)
National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan
2)
Kumamoto Liberal Arts Education Center, Tokai University, 9-1-1 Toroku, Higashiku, Kumamoto 862-8652, Japan
(Received 25 November 2014 / Accepted 2 February 2015 / Published 26 May 2015)

Abstract

A verification scenario of knock-on tail formation in the deuteron distribution function due to nuclear plus interference scattering is presented by observing the incident angle distribution of neutrons in a vacuum vessel. Assuming a knock-on tail created in a 3He-beam-injected deuterium plasma, the incident angle distribution and energy spectra of the neutrons produced by fusion reactions between 1-MeV and thermal deuterons are evaluated. The relation between the neutron incident angle to the vacuum vessel and neutron energy is examined in the case of anisotropic neutron emission due to knock-on tail formation in neutral-beam-injected plasmas.


Keywords

nuclear plus interference scattering, fast-ion velocity distribution function, neutron emission spectrum, beam-injected deuterium plasma, neutron incident angle distribution, neutron incident energy spectrum, Large Helical Device

DOI: 10.1585/pfr.10.3403055


References

  • [1] L. Ballabio et al., Phys. Rev. E 55, 3358 (1997).
  • [2] H. Matsuura et al., Phys. Plasmas 13, 062507 (2006).
  • [3] H. Matsuura et al., Plasma Phys. Control. Fusion 53, 035023 (2011).
  • [4] J.J. Devaney et al., Nucl. Sci. Eng. 46, 323 (1971).
  • [5] S.T. Perkins et al., Nucl. Sci. Eng. 77, 20 (1981).
  • [6] J. Källne et al., Phys. Rev. Let. 85, 1246 (2000).
  • [7] H. Matsuura et al., Fusion Sci. Technol. 60, 630 (2011).
  • [8] H. Matsuura et al., Plasma Fusion Res. 8, 2403064 (2013).
  • [9] J. Galambos et al., Nucl. Fusion 24, 739 (1984).
  • [10] Y. Nakao et al., Nucl. Fusion 28, 1029 (1988).
  • [11] O. Mitarai et al., Fusion Eng. Des. 81, 2719 (2006).
  • [12] H. Matsuura et al., Plasma Fusion Res. 7, 2403076 (2012).
  • [13] H. Matsuura et al., Plasma Fusion Res. 9, 3402062 (2014).
  • [14] P.P.H. Wilson et al., Fusion Eng. Des. 83, 824 (2008).
  • [15] J.C. Rivas et al., Fusion Sci. Technol. 64, 687 (2013).
  • [16] H.-S. Bosch et al., Nucl. Fusion 32, 611 (1992).
  • [17] H. Brysk, Plasma Phys. 15, 611 (1973).

This paper may be cited as follows:

Shota SUGIYAMA, Hideaki MATSUURA, Daisuke Uchiyama, Daisuke SAWADA, Tsuguhiro WATANABE, Osamu MITARAI and Takuya GOTO, Plasma Fusion Res. 10, 3403055 (2015).