[Table of Contents]

Plasma and Fusion Research

Volume 10, 1402007 (2015)

Regular Articles


Simultaneous Measurement of Plasma Pressure Anisotropy with a Double-Pass Thomson Scattering Diagnostic System on the TST-2
Junichi HIRATSUKA, Akira EJIRI, Makoto HASEGAWA1), Yoshihiko NAGASHIMA1), Keishun NAKAMURA, Yuichi TAKASE, Hiro TOGASHI, Hiroshi TOJO2), Takashi YAMAGUCHI and TST-2 group
The University of Tokyo, Kashiwa 277-8561, Japan
1)
Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
2)
Japan Atomic Energy Agency, 801-1 Mukoyama, Naka-shi, Ibaraki 311-0193, Japan
(Received 28 March 2014 / Accepted 3 October 2014 / Published 27 February 2015)

Abstract

We have developed a double-pass Thomson scattering diagnostic system for the TST-2 spherical tokamak device. By measuring the first- and second-pass scattering signals simultaneously, we obtained the two directional pressures and we measured the pressure anisotropy (i.e., the ratio of the pressures) with an error of 5% - 10% for moderate density (≈ 2 × 1019 m−3) plasmas. We observed 30% and 100% anisotropy at the center and edge of the Ohmic-heated plasmas, respectively. We propose a three-temperature Maxwellian model, in which the fitting is better than in the shifted-Maxwellian model. The estimated plasma current density was close to the averaged current density. The results suggest that the contribution of thermal electrons to a plasma current is large in Ohmic-heated plasmas.


Keywords

Thomson scattering, double-pass configuration, pressure anisotropy, current density measurement, TST-2

DOI: 10.1585/pfr.10.1402007


References

  • [1] C.M. Bishop and R.J. Hastie, Nucl. Fusion 25, No.10, 1443 (1985).
  • [2] J.B. Taylor, Phys. Fluids 6, No.11, 1529 (1963).
  • [3] T. Matoba et al., Jpn. J. Appl. Phys. 18, 1127 (1979).
  • [4] R.G. Watt and Z.A. Pietrzyk, Phys. Fluids 22, 778 (1979).
  • [5] E. Yatsuka et al., Nucl. Fusion 51, 123004 (2011).
  • [6] H. Tojo et al., Rev. Sci. Instrum. 83, 10E346 (2012).
  • [7] M.D. Bowden et al., J. Appl. Phys. 73, No.6, 2732 (1993).
  • [8] I.H. Hutchinson, J. Phys. D: Appl. Phys. 10, L11 (1977).
  • [9] A.C.A.P. Van Lammeren et al., Nucl. Fusion 32, No.4, 655 (1992).
  • [10] Y. Yagi et al., Plasma Phys. Control. Fusion 33, No.12, 1391 (1991).
  • [11] L. Pieroni and S.E. Segre, Phys. Rev. Lett. 34, No.15, 928 (1975).
  • [12] F.A. Karelse et al., Plasma Phys. Control. Fusion 43, 443 (2001).
  • [13] J. Hiratsuka et al., Plasma Fusion Res. 6, 1202133 (2011).
  • [14] J. Hiratsuka et al., Plasma Fusion Res. 7, 2402092 (2012).
  • [15] Y. Takase et al., Nucl. Fusion 41, 1543 (2001).
  • [16] A. Ejiri et al., Plasma Fusion Res. 5, S2082 (2010).
  • [17] N. Singh, Plasma Phys. 20, 927 (1978).
  • [18] R.W. Harvey and M.G. McCoy, “CQL3D Fokker-Planck code”, in Proceedings of the IAEA Technical Committee Meeting on Simulation and Modeling of Thermonuclear Plasmas, Montreal, Canada, 1992 (USDOC NTIS Document No. DE93002962).

This paper may be cited as follows:

Junichi HIRATSUKA, Akira EJIRI, Makoto HASEGAWA, Yoshihiko NAGASHIMA, Keishun NAKAMURA, Yuichi TAKASE, Hiro TOGASHI, Hiroshi TOJO, Takashi YAMAGUCHI and TST-2 group, Plasma Fusion Res. 10, 1402007 (2015).