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We have developed a double-pass Thomson scattering diagnostic system for the TST-2 spherical tokamak
device. By measuring the first- and second-pass scattering signals simultaneously, we obtained the two directional
pressures and we measured the pressure anisotropy (i.e., the ratio of the pressures) with an error of 5% - 10% for
moderate density (� 2 × 1019 m−3) plasmas. We observed 30% and 100% anisotropy at the center and edge of
the Ohmic-heated plasmas, respectively. We propose a three-temperature Maxwellian model, in which the fitting
is better than in the shifted-Maxwellian model. The estimated plasma current density was close to the averaged
current density. The results suggest that the contribution of thermal electrons to a plasma current is large in
Ohmic-heated plasmas.
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1. Introduction
The velocity distribution functions of plasma tend to

be isotropic Maxwellian distribution functions when in
equilibrium. In high temperature fusion plasmas, how-
ever, the distribution functions can be distorted due to var-
ious reasons, such as the electric field, the magnetic mir-
ror effect, wave heating, and neutral beam injection. This
anisotropy in the velocity distribution function results in
a destabilization of the ballooning modes [1] and a defor-
mation of the plasma pressure from the flux function [2].
Although anisotropy measurement is important, the diag-
nostics for the plasma core have not been established.

The Thomson scattering diagnostic is a method for
measuring electron temperature and density from Thom-
son scattering light of a laser beam injected into a plasma.
The wavelength spectrum of the scattering light reflects the
Doppler shift of the electrons along the scattering vector
k = ks − ki [3]. Here, ks and ki are the wave vectors
of the scattered light and the injected laser, respectively.
The width of the spectrum represents the electron temper-
ature, and the intensity of the scattering light is propor-
tional to the electron density. A method to measure the
plasma pressure anisotropy with Thomson scattering di-
agnostics, proposed in 1979 [4], was discussed recently in
detail [5,6]. Several experiments using Thomson scattering
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diagnostics have been performed to measure plasma pres-
sure anisotropy and the shape of the plasma velocity dis-
tribution function [7–12]. These studies used visible high
power lasers, that are not suitable for fusion plasma diag-
nostics. In addition, the reproducibility of the plasma dis-
charge is still uncertain since pe,⊥ and pe,|| were not mea-
sured simultaneously.

A two-directional plasma pressure diagnostic, the
double-pass Thomson scattering diagnostic, with a
Nd:YAG laser, was recently developed [13, 14]. The
Nd:YAG laser is more appropriate than visible lasers due
to its high repetition rate and its wavelength region (in-
frared). Furthermore, pe,⊥ and pe,|| are measured almost
simultaneously. In order to measure two-directional veloc-
ity distribution functions, the direction of ks or ki should
be changed for each measurement. A laser beam passes
through a plasma once in a standard Thomson scattering
diagnostic. In contrast, the laser beam is reflected back to
the plasma in the double-pass scheme. Then, the forward
and the backward scattering light can be measured by sin-
gle collection optics. Therefore, Thomson scattering lights
with two directions of ki can be measured, and we can ob-
tain the two-directional velocity distribution functions of
the thermal electrons (Fig. 1).

However, there are problems for double-pass mea-
surements using a Nd:YAG laser. First, the number of
wavelength channels is restricted in Nd:YAG Thomson
scattering because of the low signal level. Second, detec-
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Fig. 1 Schematic of the geometry of double-pass Thomson scat-
tering.

tor and electric circuit must be fast-response and low-noise
to separate the two pulses of the Thomson scattering lights
within a very short time interval. In addition, we must con-
sider the shape of the velocity distribution function when
we apply this method to current density diagnostics. Al-
though a current density profile was obtained in [12], the
authors also reported that the estimation from the shifted-
Maxwellian fitting was different from that of the moment
of the velocity distribution in an Ohmic-heated plasma.

In this paper, we report an accurate diagnostic of pres-
sure anisotropy with few wavelength channels by using a
fast and low-noise detection system and by evaluating mea-
surement error in detail. We also investigated the velocity
distribution function in an Ohmic-heated plasma, and de-
scribe its application to current density measurement.

2. Double-Pass Thomson System
We have developed and previously reported a double-

pass Thomson scattering diagnostic system [13, 14] on a
TST-2 spherical tokamak device (Ip � 100 kA, Bt < 0.2 T,
R0 = 0.38 m and a = 0.25 m) [15]. This system consists
of laser injection optics, collection optics, and a detection
system. We used a Nd:YAG laser with a beam energy
of 1.6 J and a pulse width of 10 ns. The laser is injected
into the plasma and reflected back by a spherical mirror
(Fig. 2). The Thomson scattering lights, excited by the
laser beam in the first- and second-passes, are collected
by a spherical collection mirror (diameter 600 mm, focal
length 300 mm) and then transferred into polychromators
by fibers with a numerical aperture of 0.37. There are six
wavelength channels in each polychromator. Each chan-
nel consists of an interference filter, an avalanche photo-
diode (Si APD S8890-30, Hamamatsu Photonics), and a
two-stage amplifier. The detected signal is digitized by an
oscilloscope. The forward- and backward-scattering pulses
are separated clearly by a fast and low-noise detection sys-
tem [16]. In this system, the velocity distribution functions
that are nearly perpendicular and parallel to the magnetic
field can be measured within 40 ns (Fig. 3). The forward
and backward Thomson scattering signal intensities are es-
timated separately by fitting a superposition of two single-
pass Thomson scattering waveforms. Details of the wave-

Fig. 2 Schematic of the laser path.

Fig. 3 Typical signals of a forward and a backward Thomson
scattering light for each wavelength channel of a poly-
chromator. Blue symbols with error bars represent sig-
nals with random noise including shot noise from stray
light and thermal noise. Red curves denote fitting results
to a template waveform [13].

form fitting are described in [13].
Spectra obtained by the first- and second-passes re-

flect velocity distribution functions with different direc-
tions parallel to kfirst and ksecond, respectively. kfirst and
ksecond are the scattering vectors of the first- and second-
passes, respectively. Furthermore, the scattering angles are
different for the first- and second-passes. Spectra from a
plasma with a temperature of 100 eV are plotted in Fig. 4,
as are the sensitivities of each polychromator wavelength
channel.

In order to prevent the laser beam from returning to the
laser device, the returning laser path (second-pass) is dis-
placed from the injecting laser path (first-pass). The mea-
surement points in the first- (lower field side) and second-
passes (higher field side) are about 10 mm apart, along the
radial direction.

3. Error Estimation
Velocity distribution functions should be measured

precisely for the diagnostics of pressure anisotropy and
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Fig. 4 Thomson scattering spectra measured by the first- (red)
and second-passes (blue) from a plasma with an electron
temperature of 100 eV. The sensitivities of the polychro-
mator wavelength channels (see Fig. 3) are also plotted.

plasma current density. However, the Thomson scattering
signal is weak. Therefore, error estimation is important.

An error may be classified into systematic error and
random error. The main sources of systematic error are
variations in environmental temperature and bias voltage.
These variations can pose problems because the sensitivity
of the detector (APD) depends on these factors. With this
system, the environmental temperature and bias voltage
are controlled to an accuracy of less than 1◦C and 0.5 V,
respectively, which reduces the systematic error to 1.3%.
Another systematic error comes from the 10 mm differ-
ence in the observation points for the forward and back-
ward Thomson scattering measurements. The total sys-
tematic errors including these effects are 1.4% and 9.1% at
R = 389 mm and R = 220 mm, respectively. On the other
hand, the main sources of random noise are shot noise from
stray signals, shot noise from a Thomson scattering signal,
thermal noise [16], and errors in the waveform fitting. We
reduced stray light with appropriate apertures (baffle plates
and movable apertures in Fig. 2) to mask the stray light on
the laser path. Figure 5 shows typical time-averaged stray
light signals. We obtained the Thomson scattering signal
by subtracting the averaged stray light signal from the mea-
sured signal. When we added all the wavelength channel
signals, we found that the level of the stray light signal was
less than about 5% of the Thomson scattering signal. The
number of detected photons in the experiments described
in this paper was at least more than 1000, which means that
the error from the shot noise from stray light was less than
0.8%.

The dominant random noise sources were shot noise
from Thomson scattering light, thermal noise, and error
in the waveform fitting. The level of shot noise depends
on the detected photon number, whereas thermal noise is
independent of it. Therefore, total random noise σrandom

Fig. 5 Comparison of the intensity of the measured scattering
signals (black) and the averaged stray light signals (red).
The difference in DC levels between the black and the red
curves represents the background plasma light.

Fig. 6 Average vs. relative error of 1024 Raman scattering sig-
nals (double logarithmic plot).

can be expressed as

σrandom =
√
ηshotμ + αthermal, (1)

where μ is the signal intensity. ηshot is a coefficient reflect-
ing the shot noise, and α is a constant reflecting the thermal
noise and the error in the waveform fitting. We estimated
the constants by measuring the rotational Raman scatter-
ing of nitrogen. The scattering from nitrogen at constant
pressure can be used as a light source of constant intensity.
The average and standard deviation of 1024 Raman scatter-
ing signals correspond to μ and σrandom, respectively. Fig-
ure 6 shows the relation between the measured signal in-
tensity and the random error values. We fitted the relation
to the Eq. (1). Diamonds (�), squares (�), triangles (�),
and crosses (×) represent the four wavelength channels of
the polychromators. The black, red, and blue symbols in-
dicate three different polychromators. The differences in
the lines are caused by the difference in the sensitivities of
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the polychromator channels.
The random error of each channel can be calculated

from Eq. (1). For ne = 2 × 1019 m−3 (Fig. 3), the random
errors in the electron temperature measured by the first-
and second-passes (Te,first and Te,second) are 2.4% and 4.5%,
respectively, leading to a random temperature anisotropy
error of Δ(Te,⊥/Te,||) = 5.1%. As the systematic errors are
about 1.4% and 9.1%, in this case, the total measurement
errors were 5% and 10% at R = 389 mm and R = 220 mm,
respectively.

4. Simulations and Models
The velocity distribution in an Ohmic-heated plasma

is distorted by an external electric field along the toroidal
direction [17]. Thus, a modeling of the distribution which
expresses this distortion is necessary to reconstruct the dis-
tribution from the Thomson scattering signals. We calcu-
lated the velocity distribution function with the Fokker-
Planck code CQL3D [18] for an Ohmic-heated plasma in
the TST-2 device. In general, the shifted-Maxwellian is
assumed for such a measurement. However, the calcula-
tion results suggest that there is no shift but the distribu-
tion is similar to that of Maxwellian’s for different tem-
peratures along ve,|| > 0, ve,|| < 0, and ve,⊥. In order to
represent such a distorted distribution, we propose a three-
temperature Maxwellian model, in which the velocity dis-
tribution function is expressed as follows:

fe(ve,⊥) = ne,⊥
√

m
2πkTe,⊥

exp

(
− m

2kTe,⊥
v2e,⊥

)
,

fe(ve,|| > 0) = ne,co

√
m

2πkTe,co
exp

(
− m

2kTe,co
v2e,||

)
,

fe(ve,|| < 0) = ne,ctr

√
m

2πkTe,ctr
exp

(
− m

2kTe,ctr
v2e,||

)
.

(2)

Here, we defined the polarity as positive ve,|| > 0 when
the electron is co-directed with the acceleration direction
of the Ohmic electric field. We refer to the ve,|| > 0
and ve,|| < 0 directions as the co- and counter- (ctr-) di-
rections, respectively. Pressures are defined as pe,⊥ =
ne,⊥Te,⊥, pe,co = ne,coTe,co and pe,ctr = ne,ctrTe,ctr. Fig-
ure 7 shows a typical fitting result for a double-pass mea-
surement into the three-temperature Maxwellian model.
We obtained the data in a normal electric field discharge
(blue in Fig. 9). ne,first = (2.07 ± 0.03) × 1019 m−3 and
ne,second = (2.06 ± 0.06) × 1019 m−3, Te,first = 120 ± 3 eV
and Te,second = 135 ± 6 eV.

5. Experimental Results
We measured the pressure anisotropy of the Ohmic-

heated plasma at the plasma center (R = 389 mm) and edge
(R = 220 mm) on TST-2 with the double-pass Thomson
scattering system. The scattering angles and the angle be-
tween the scattering vector k and the toroidal direction at

Fig. 7 A typical fitting result to the three-temperature
Maxwellian model for the first- (left) and second- (right)
pass scattering signals. Black squares with error bars
denote the detected signals and red curves indicate the
fitting results.

Table 1 The scattering angle (θ) and the angle between the scat-
tering vector k and the toroidal direction (φ) at each
measurement point.

R [mm] θfirst θsecond φfirst φsecond

220 138.9◦ 40.1◦ 128.2◦ 38.2◦

389 124.7◦ 55.1◦ 91.3◦ 1.25◦

Fig. 8 Time slices of the total plasma current (Ip) and loop volt-
age (Vloop) of a typical Ohmic-heated plasma in TST-2
with normal (blue) and reversed (red) electric fields.

each measurement point are listed in Table 1.
Since most of the signals reflect only one side of a

velocity distribution function, as shown in Fig. 4, we can
not measure pe,co and pe,ctr simultaneously. Therefore, we
reversed the Ohmic electric field to invert the velocity dis-
tribution function of the plasma. Then, the plasma cur-
rent is also reversed (Fig. 8). We then measured pe,first and
pe,second at the plasma center and edge with normal and re-
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Fig. 9 Relationship between the parameters measured by the
first- and the second-pass at the plasma center (R =

389 mm, left) and at the edge (R = 220 mm, right) with
normal (blue) and reversed (red) electric field. Pressure
(a, d), temperature (b, e) and (c, f) density are shown.

versed Ohmic fields (Fig. 9). In the TST-2 configuration,
we measured pressures pe,⊥ and pe,|| (pe,co or pe,ctr) by the
first- and second-passes at the plasma center, respectively.
We measured pe,co and pe,ctr with the second-pass in the
normal and the reversed electric fields experiment, respec-
tively. We note here that kfirst (ksecond) is not purely perpen-
dicular (parallel) to the magnetic field at the plasma edge
(see Table 1). In Fig. 9, each symbol corresponds to one
measurement of a plasma discharge. Figure 9 shows the
data scatter. The ranges for plasma density, temperature
and the Ohmic electric field are wide because we took mea-
surements for several different discharge timings. These
differences may be the cause of the scatter.

Figure 9 shows a clear relation of pe,co > pe,⊥ > pe,ctr,
which is qualitatively consistent with the CQL3D code cal-
culation. The pressure anisotropies pe,||/pe,⊥ are around
30% and 100% at the plasma center and edge, respectively.
Note that the anisotropy at the edge might be larger be-
cause the directions of the measurement are not purely per-
pendicular (parallel) to the magnetic field. The large mea-
sured anisotropy cannot be explained by the 5% and 10%
measurement errors at the plasma center and edge, respec-
tively.

Table 2 Averaged χ2 values of the fitting. 3T and Shift indi-
cate the three temperature-Maxwellian model and the
shifted-Maxwellian model, respectively.

R [mm] Models n m 〈χ2〉/(n − m) Data number

389 3T 6 2 1.55 382
389 Shift 6 2 2.01 382
220 3T 6 2 1.84 571
220 Shift 6 2 2.83 571

Furthermore, we compared the chi-squared value
χ2 of the three-temperature Maxwellian model and the
shifted-Maxwellian model. χ2 represents the goodness of
fit, defined as follows:

χ2 =
∑

i

(yi − yfit,i)2

σ2
i

,

where yi, yfit,i, and σi are the Thomson scattering signal,
the resultant value of fitting, and the measurement error,
respectively. i is the index of a polychromator wavelength
channel. We estimated σi from the relation in Eq. (1). The
results are listed in Table 2. n and m indicate the number
of wavelength channels and the number of fitting param-
eters, respectively. 〈χ2〉 denotes the averaged value of χ2

for all data. As a result, fitting to the three-temperature
Maxwellian model is better than the fitting to the shifted-
Maxwellian model in both cases. However, there is a finite
difference between 〈χ2〉 and n − m, which suggests that
either more parameters or a more appropriate model is re-
quired.

Using the three-temperature Maxwellian model, we
calculated the current density of the thermal electrons from
the results shown in Fig. 9. We derived the current density
je from Eq. (2) as

je ≡ e
∫
v|| fe(v||)dv||

= e

√
k

2πm

(
ne,co

√
Te,co − ne,ctr

√
Te,ctr

)
. (3)

In order to investigate the dependence of je on the plasma
resistivity η, we define η as

η =

√
2

12π3/2

Zeffe2m1/2
e

ε20 T 3/2
e,first

lnΛ. (4)

Zeff , e, me, ε0 and lnΛ are the effective charge, the ele-
mentary charge, the electron mass, the vacuum permittiv-
ity, and the Coulomb logarithm, respectively. Here, we
assume Zeff = 1.

Since only pe,co or pe,ctr can be measured for one
plasma discharge, we assumed that the plasma parameters
depend on Te,first(� Te,⊥). Then we divided the Te,first data
into every 10 eV and 5 eV intervals for the plasma center
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Fig. 10 The relation between je and η at the plasma center and
the edge. Only the data of which the number of mea-
surement is more than 10 is plotted. Sky blue hatched
areas represent the range of jave in the experiments.

and edge, respectively. In each group, we averaged the
corresponding Te,second, ne,first, and ne,second, and then sub-
stituted the averaged values into Eqs. (3) and (4). Figure 10
shows the relations between je and η. The hatched ar-
eas represent the spatially-averaged current density jave =

Ip/πa2 in the experiments. The measured current density
value is close to that of jave. This result suggests that the
contribution of thermal electrons (not fast electrons) to the
current density is relatively large in Ohmic-heated plas-
mas.

6. Summary
We developed a double-pass Thomson scattering di-

agnostic system on the TST-2, evaluated the systematic
and random errors, and found the measurement error to be
around 5 - 10% for plasmas with a density of 2× 1019 m−3.
We observed a finite difference between pressures perpen-
dicular and parallel to the magnetic field. The co-directed
(i.e., the direction of electron acceleration) parallel pres-
sure was almost always higher than the perpendicular pres-
sure, and the counter-directed parallel pressure was al-
most always lower than the others. There was a pressure
anisotropy of around 30% at the plasma center, while at
the plasma edge it was around 100%. This represents the

first measurement of a relatively large electron pressure
anisotropy in high temperature plasmas. The fitting to the
three-temperature Maxwellian model was better than to the
shifted-Maxwellian model, which is qualitatively consis-
tent with the Fokker-Planck code calculation. We calcu-
lated the electron current density of the plasma using the
three-temperature model. The resulting values are close to
the spatially-averaged current density, which suggests that
the contribution of thermal electrons to the plasma cur-
rent is relatively large in Ohmic-heated plasmas. These
results contribute to the understanding of the anisotropy
of electron velocity distribution functions and demonstrate
the possibility of measuring current density with Thomson
scattering diagnostics.
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