[Table of Contents]

Plasma and Fusion Research

Volume 9, 1404096 (2014)

Regular Articles


Nonlocal Electron Heat Transport in Magnetized Dense Plasmas
Akio NISHIGUCHI
Osaka Institute of Technology, Osaka 535-8585, Japan
(Received 20 November 2013 / Accepted 8 May 2014 / Published 4 July 2014)

Abstract

Nonlocal electron heat transport in magnetized dense plasmas is studied numerically using a nonlinear Fokker-Planck (FP) model with self-consistent electric fields. The nonlocal effect in electron heat transport is evaluated by comparison with the effective mean free path and the scale length of the temperature gradient. The dependence of the nonlocal electron heat transport on the effective mean free path is shown in this study. Under a very strong magnetic field, the effective electron mean free path becomes shorter than the scale length of the temperature gradient and the results of the FP and linear models agree well. Under a very strong magnetic field, the electron distribution is described by the Maxwell-Boltzmann distribution.


Keywords

nonlocal electron heat transport, magnetic field, high-temperature dense plasma, Fokker-Planck, laser fusion

DOI: 10.1585/pfr.9.1404096


References

  • [1] J.A. Stamper, K. Papadopoulos, R.N. Sudan, S.O. Dean, E.A. Mclean and J.M. Dawson, Phys. Rev. Lett. 26, 1012 (1971).
  • [2] T. Okada, T. Yabe and K. Niu, J. Phys. Soc. Jpn. 43, 1042 (1977).
  • [3] C.E. Max, W.M. Manheimer and J.J. Thomson, Phys. Fluids 21, 128 (1978).
  • [4] K. Mima, T. Tajima and J.N. Leboeuf, Phys. Rev. Lett. 41, 1715 (1978).
  • [5] Y. Sakagami, H. Kawakami, S. Nagao and C. Yamanaka, Phys. Rev. Lett. 42, 839 (1979).
  • [6] T. Mochizuki, T. Yabe, K. Mima, K. Yoshikawa, H. Azechi, A. Kikuchi and C. Yamanaka, Jpn. J. Appl. Phys. 19, L645 (1980).
  • [7] M.G. Haines, Phys. Rev. Lett. 47, 917 (1981).
  • [8] M.H. Emery, J.H. Gardner and J.P. Boris, Plasma Physics and Controlled Nuclear Fusion Research 1984, Vol.3, p.129, Nucl. Fusion Suppl. (1985).
  • [9] A. Nishiguchi, T. Yabe and M.G. Haines, Phys. Fluids 28, 3683 (1985).
  • [10] F. Hattori, H. Takabe and K. Mima, Phys. Fluids 29, 1719 (1986).
  • [11] M. Tatarakis et al., Phys. Plasmas 9, 2244 (2002).
  • [12] T.H. Kho and M.G. Haines, Phys. Rev. Lett. 55, 825 (1985).
  • [13] J.F. Luciani, P. Mora and A. Bendib, Phys. Rev. Lett. 55, 2421 (1985).
  • [14] T.H. Kho and M.G. Haines, Phys. Fluids 29(8), 2665 (1986).
  • [15] A.V. Brantov, V.Yu. Bychenkov, W. Rozmus, C.E. Capjack and R. Sydora, Phys. Plasmas 10, 4633 (2003).
  • [16] A.R. Bell, R.G. Evans and D.J. Nicholas, Phys. Rev. Lett. 46, 243 (1981).
  • [17] J.P. Matte and J. Virmont, Phys. Rev. Lett. 49, 1936 (1982).
  • [18] J.R. Albritton, Phys. Rev. Lett. 50, 2078 (1983).
  • [19] R.J. Mason, Phys. Rev. Lett. 47, 652 (1981).
  • [20] D.J. Bond, Phys. Lett. A88, 144 (1982).
  • [21] A.B. Langdon, Proc. 1981 Centre European de Calcul Atomique et Moleculaire Workshop on The Flux-Limiter and Heat Flux Instabilities in Laser-Fusion Plasmas (Universite Paris Sud, France, 1981) p.69.
  • [22] S.I. Braginskii, Reviews of Plasma Physics 1 (Consultants Bureau, New York, 1965).

This paper may be cited as follows:

Akio NISHIGUCHI, Plasma Fusion Res. 9, 1404096 (2014).