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Nonlocal electron heat transport in magnetized dense plasmas is studied numerically using a nonlinear
Fokker–Planck (FP) model with self-consistent electric fields. The nonlocal effect in electron heat transport
is evaluated by comparison with the effective mean free path and the scale length of the temperature gradient.
The dependence of the nonlocal electron heat transport on the effective mean free path is shown in this study.
Under a very strong magnetic field, the effective electron mean free path becomes shorter than the scale length
of the temperature gradient and the results of the FP and linear models agree well. Under a very strong magnetic
field, the electron distribution is described by the Maxwell–Boltzmann distribution.
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1. Introduction
Electron heat transport plays an important role in

laser-produced plasmas. For example, high-density com-
pression is critical to the ignition in laser fusion, where
efficient electron heat transport and uniform implosion are
crucial. High-density compression is sensitive to preheat-
ing and uniformity, which strongly depend on heat trans-
port. In laser produced plasmas, a magnetic field will be
important because it implicates transport and nonunifor-
mities. Spontaneously generated magnetic fields in laser-
produced plasmas have been experimentally observed and
theoretically demonstrated [1–11]. However, to directly
detect the magnetic field B is difficult in collisional over-
dense plasma. Many theoretical studies of electron heat
transport in the region have not been taking it into consid-
eration. The high electron heat flux in overdense plasma
supplies free energy to the instability that generates the
magnetic fields. The well-known ∇T × ∇n effect arising
from nonuniform laser illuminations and fluid instabilities,
such as Rayleigh–Taylor (RT) and/or Kelvin–Helmholtz,
can generate megagauss magnetic fields. The RT instabil-
ity is a major magnetic field source in imploded plasmas in
acceleration and deceleration phases. In particular, in the
deceleration phase, magnetic fields are rapidly compressed
and amplified; thus, they become sufficiently strong and af-
fect the electron heat transport. The smoothing of nonuni-
formities depends on how the electron heat transport inter-
acts with magnetic fields. Therefore, the coupled study of
electron transport and magnetic field in the region is impor-
tant. Theoretical studies are complicated by a steep tem-
perature gradient, where the nonlocal description of elec-
tron transport is required. The nonlocal electron heat trans-
port in magnetized laser plasmas has been previously in-
vestigated [12–15], where the nonlocal electron heat trans-
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port between the laser hot spot and the ablation front was
studied. For a very strong magnetic field, it is suggested
that the nonlocal effect perpendicular to the magnetic field
almost vanishes.

A strong self-generated magnetic field is present in
laser fusion plasma. In the Fast Ignition of inertial confine-
ment fusion, an external magnetic field is applied to con-
trol and guide the high-energy electron transport toward
the compressed core plasma. To perform calculations with
the required accuracy, analyzing the nonlocal electron heat
transport in a magnetic field in three dimensions is nec-
essary. However, the calculation of the three-dimensional
nonlinear Fokker–Planck (FP) model using self-consistent
E and B fields is very difficult. Therefore, in this study,
the nonlinear kinetics of the electron transport in magne-
tized dense plasmas and the dependence of the electron
heat transport on the magnetic field strength are analyzed
and clarified. The results are expected to help simplify
the models of the nonlocal electron heat transport across
a magnetic field.

In this study, the calculations of the nonlinear kinet-
ics of the electron transport in magnetized dense plasmas
are described. Although the magnetic field will arise due
to multidimensional effects, the calculation is restricted to
one dimension for simplicity. Thus, the self-generation of
the magnetic field is not considered. Instead, an externally
imposed source of the magnetic field is assumed. The mag-
netic field is spatially uniform and constant over time. The
interaction of the magnetic field and the nonlinear heat flux
in a steep temperature gradient is studied numerically.

In the past, nonlocal transport in a steep tempera-
ture gradient has been found to substantially alter the heat
flux relative to the predictions of linear transport theory
[16–20]. In this study, it is investigated how the magnetic
field affects the nonlocal electron heat transport. The non-
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local effects on electron transport are examined under a
magnetic field of variable strength as compared with mod-
els that use Braginskii’s transport coefficients. In the fol-
lowing sections, the numerical model is described and the
results are presented.

2. Numerical Modeling
A slab of uniform dense plasma with a steep tem-

perature gradient is considered. Fixed ions and only one-
dimensional spatial inhomogeneity are assumed. At a high
temperature, where the influence of the nonlocal heat trans-
port is notable, the time scale of heat transport is much
shorter than that of ion motion. Therefore, the effect of ion
motion is expected to be negligible.

The transport of electrons is described with the kinet-
ics equation as follows:

∂ f
∂t
+ u · ∇ f − e

me
(E + u × B) · ∇v f = Ccollision, (1)

where f is the distribution function, u is the particle veloc-
ity, E is the electric field, and B is the magnetic field. A
first-order Cartesian tensor expansion for the distribution
function is adopted,

f (r, u, t) = f0(r, v, t) + (u/v) · f 1(r, v, t)

= f0 + (vx/v) fx + (vz/v) fz.

The dense plasma is expected to be sufficiently collisional,
which renders the high-order terms insignificant. The most
dominant effect on electron transport is the distortion of
the isotropic part of the distribution function f0 from the
Maxwellian [16–18].

The flux-carrying part of the distribution function f 1

has two components: fz, which is parallel to ∇Te, and fx,
which is perpendicular to both ∇Te and B. The substitution
of the above expansion with FP collision into Eq. (1) gives
a coupled set of equations for f0, fx, and fz, which can be
written as follows:
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In deriving these equations, the time derivative of f 1 is ig-
nored.

From the current moments of Eqs. (2b) and (2c), and
assuming jz = 0, Ohm’s law for Ex is obtained as follows:

Ex =
me

e
(vNω − η jx). (3)

The current jx is given as follows:

jx =
1
3

∫ ∞

0
v3 fxdv,

and η and vN for arbitrary f0 are given as follows:
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The calculation proceeds according to Ref. [14]. Here, f0
and Ez are defined at n integer time steps, while ω and Ex

at half-integer time steps n + 1
2 . By substituting fx and

fz in Eq. (2a) using Eqs. (2b) and (2c), f0 is advanced in
time. The new Ez is obtained from the current moment
of Eq. (2c) and the condition jz = 0. The calculation is re-
peated until jz at the new time step is smaller than some set
tolerance. The electric field Ex is calculated from Eq. (3).
This cycle is repeated in the next time step.

The f0 equation is differenced to ensure the conserva-
tion of number density. Identifying j with velocity indices,
the values of C and D are evaluated according to Ref. [21]
as follows:

(i) C j+ 1
2
=

j∑
i=1

(v2 f0)idv, 1 < j < JM,

(ii) (vD) j+ 1
2
− (vD) j− 1

2
= (v2dv) j

JM−1∑
i= j

(v f0)i+ 1
2
dv, and

(iii) (vD) 1
2
= (v2dv)1

JM−1∑
i=1

(v f0)i+ 1
2
dv.

This anticipates the cancelation in considering the energy
moment of the collision operator.

For the results presented below, 100 velocity groups
and 50 spatial mesh points are used. The Braginskii’s de-
scriptions [22] are used in the linear transport model.

3. Nonlocal Electron Heat Transport
under a Magnetic Field
First, the result of the electron heat transport at low

temperature is presented. The initial temperatures of the

1404096-2



Plasma and Fusion Research: Regular Articles Volume 9, 1404096 (2014)

Fig. 1 The temperature profiles at the initial time (solid line) and
10 ns by using the FP (circles) and linear models (filled
triangles).

two layers are 100 eV and 50 eV, respectively. The initial
temperature profile is indicated by a solid line in Fig. 1.
The temperatures vary linearly in a 5 µm thick layer. For
simplicity, a fully ionized DT plasma is assumed. The den-
sity is spatially uniform and constant over time. The elec-
tron density is 1024 cm−3. The applied magnetic field is
zero. A continuous boundary condition is imposed on both
boundaries.

The results of the temperature profiles of the FP and
linear models at 10 ns are denoted by circles and filled
triangles, respectively, in Fig. 1. In the calculations, the
initial temperatures are low; thus, the electron mean free
pass is much shorter than the scale length of the tempera-
ture gradient Lt. The results of the FP and linear models
agree well. The electron distribution function is almost
Maxwellian anywhere.

The electron heat transport in a steep temperature gra-
dient is investigated for magnetized dense plasmas pro-
duced by implosion in laser fusion. The investigation pa-
rameters vary widely, and the results are explained using
examples. The initial temperatures of the two layers are
20 keV and 10 keV, respectively. The temperatures vary
linearly in a 5 µm thick layer from 20 keV to 10 keV, as
indicated by a solid line in Fig. 2. The electron density is
1024 cm−3. The electron mean free path at 20 keV is about
8 µm. The scale length of the initial temperature gradient
is about 5 µm. The electron heat transport is mainly gov-
erned by the electrons, which have energy several times
larger than the average temperature, and the mean free path
of the electrons is longer than the scale length of the ini-
tial temperature gradient. To investigate the influence of
the magnetic field on the nonlocal electron heat transport,

the magnitude of the magnetic field is varied from zero to
10 MG in the calculations. The imposed magnetic field is
spatially uniform and constant over time.

The temperature profiles of the FP and linear models
for four different B are shown in Fig. 2. Figure 2 (a) shows
the temperature profiles at 0.05 ps for the zero magnetic
field. The heat flux of the FP model is reduced compared
with the linear model due to the nonlocal effects of electron
transport. The electron distribution function at 30 µm is
shown in Fig. 3. In the low temperature region, the electron
distribution function has an overfilled tail, which causes
the local heat flux to be greater than that predicted by the
linear model. The heat flux produces a preheating at the
temperature front.

The temperature profiles at 0.05 ps for a magnetic field
strength of 100 kG are shown in Fig. 2 (b). In this case, the
initial Hall parameters ωτ are 0.23 and 0.09 at high and
low temperatures, respectively. The value vτ, which ap-
pears in the first term of the right-hand side of Eqs. (2b)
and (2c), is the mean free path of the electron with velocity
v. In the magnetic field, the factor (1 + ω2τ2)−1 appears
in the right-hand side of these equations. The “effective”
mean free path 1) is represented by l = vτ/(1 + ω2τ2). The
effective mean free path is the moving distance parallel to
the temperature gradient within the collision time. At this
magnetic field strength, the Hall parameters are sufficiently
small relative to unity and Figs. 2 (a) and 2 (b) show small
differences of the temperature profiles. Although the Hall
parameter becomes larger than unity for high-energy elec-
trons, the effective mean free path is still longer than the
scale length of the temperature gradient. Therefore, at this
magnetic field strength, the effect of the magnetic field on
the nonlocal electron heat transport is small.

Figure 2 (c) shows the temperature profiles at 0.5 ps
for a magnetic field strength of 1 MG. In this case, the ini-
tial values of the Hall parameters are 2.3 and 0.9 at high
and low temperatures, respectively. Because the Hall pa-
rameter exceeds unity, the nonlocal electron heat transport
is influenced by the magnetic fields, and the difference be-
tween the results of the FP and linear models decreases.
The value (1 + ω2τ2)−1 at high temperature is 0.16. The
effective mean free path of the electron at an average tem-
perature is six times shorter than the mean free path with-
out the magnetic fields. Assuming that the electron mean
free time depends on the third power of electron veloc-

1)The effective mean free path is the moving distance in the direction
parallel to the temperature gradient within collision time. The mean free
path lmfp of the particles of the speed v and the collision frequency ν is
given by lmfp = v

∫ ∞
0 e−νtdt = vτ, where τ = 1/ν. The effective mean free

path leff of the electron, which changes movement direction owing to the
cyclotron motion, is given by

leff = v
∫ ∞

0
e−νt cos(ωt)dt =

vτ

1 + (ωτ)2
.

Because τ is almost proportional to v3 in the plasma, the effective mean
free path of the electron with velocity higher than a certain value becomes
shorter as the velocity increases.
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Fig. 2 The temperature profiles given by the FP and linear models at 0.05 ps for B = 0 G (a) and B = 100 kG (b), and at 0.5 ps for
B = 1 MG (c), and 10 ps for B = 10 MG (d), respectively. The initial temperature profile is denoted by a solid line. The FP results
are shown by circles and the linear model results are shown by filled triangles. The dotted line shows the initial ωτ value.

ity, the effective electron mean free pass is the longest at
ωτ ≈ √2 2). For high-energy electrons, the mean free
time becomes longer, whereas the effective mean free path
shortens depending on vτ/(1+ω2τ2), as shown in Fig. 5. At
B = 1 MG, the maximum value of the effective mean free
path is about 1 µm. The mean free path of all electrons
becomes shorter than the scale length of the temperature
gradient and the nonlocal effect decreases. However, for
the nonlocal effect to disappear, the mean free path of all
electrons must become much shorter than the scale length
of the temperature gradient. Therefore, the nonlocal effects
do not vanish completely, and the characteristic foot of the
temperature front is observed, as shown in Fig. 2 (c).

The temperature profile for strongly magnetized
plasma, where the strength of the magnetic field is 10 MG,

2)Assuming τ = τ0v3, effective mean free path can be written as
τ0v

4/(1 +ω2τ20v
6). The derivative of this value with respect to v becomes

zero and the effective mean free path takes a maximum value at ωτ =
√

2.

is shown in Fig. 2 (d). The initial Hall parameters are 23
and 9 at high and low temperatures, respectively. The elec-
tron distribution functions at 30 µm are shown in Fig. 4.
For strongly magnetized plasma, the temperature profile of
the FP and linear models agree, and the electron distribu-
tion function becomes almost Maxwellian. At B = 10 MG,
the maximum effective mean free path is about 0.05 µm, as
shown in Fig. 5. The mean free path of all electrons be-
comes much shorter than the scale length of the tempera-
ture gradient; thus, a classical diffusion model can be used
even for high-energy electrons.

The relation of the strength of the magnetic field and
the nonlocal effect of the electron heat transport is shown
in Figs. 6 (a) and 6 (b). The dependence of the limitation
factor to the magnetic field strength is shown in Fig. 6 (a).
The limitation factor is a coefficient by which the thermal
conductivity is multiplied such that the total heat flux ac-
cording to the linear model should resemble that of the FP
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Fig. 3 Circles show the electron distribution function at 30 µm.
The electron distribution function has an overfilled tail.
The solid line shows the Maxwell distribution at the cor-
responding temperature (Te =

∫
1/2m2 f0dv3 in the FP

model).

Fig. 4 The electron distribution function at 30 µm for a mag-
netic field strength of 10 MG. The circles denote the
distribution function at 10 ps. The solid line represents
the Maxwell distribution at the corresponding tempera-
ture (Te =

∫
1/2m2 f0dv3 in the FP model).

model at 25 µm. When ωτ exceeds two, the amount of heat
flow according to the FP model agrees with the heat flow
value of the linear model. The ratio of the effective mean
free path and the scale length of the temperature gradient is
shown in Fig. 6 (b). The effective mean free path becomes
about 1/6 of the scale length of the temperature gradient at

Fig. 5 Dependence of the effective electron mean free path on
the magnetic field strength. The electron density is
1024 cm−3.

1 MG, and the heat flux limitation due to the nonlocal effect
disappears. It seems that the nonlocal effect disappears in
the longer mean free path compared with the case without
a magnetic field. The nonlocal effect in the magnetic field
is decreased because the effective mean free path of high-
energy electrons shortens, as shown in Fig. 5. In this case,
the effective mean free path of the important heat carriers
is shorter than 1 µm.

In the magnetic field, the electron mean free path does
not exceed the Larmor diameter 3). If the Larmor diame-
ter is sufficiently shorter than the scale length of the tem-
perature gradient, high-energy electrons tend to behave
like collisional electrons. As a result, the nonlocal effect
on electron transport decreases. For strongly magnetized
plasma, the effective mean free paths of all electrons be-
come shorter than the scale length of the temperature gra-
dient, and the electron heat transport agrees well with the
classical diffusion model. Moreover, the electron distribu-
tion functions agree well with the Maxwellian distribution
locally. Whether a nonlocal model is required for the elec-
tron transport in magnetized plasmas is inferred by com-
paring the scale length of the temperature gradient and the
effective mean free path, as shown in Fig. 5.

In summary, the electron heat transport in magnetized
plasmas was studied using the nonlinear FP model with
a magnetic field of variable strength. The dependence of
the nonlocal electron heat transport on the magnetic field
strength was specified. The nonlocal effect on electron
transport can be estimated by comparing the effective mean
free path with the scale length of the temperature gradient.
Under a strong magnetic field, the electron heat transport

3)An electron moves along with the circumference including the col-
liding points after collisions. Therefore, the next colliding point is on this
circumference. The distance of the two colliding points is the mean free
path and is shorter than the Larmor diameter.
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Fig. 6 Dependence of the limitation factor (solid line in
Figs. 6 (a) and 6 (b)), ωτ (dotted line in Fig. 6 (a)), and the
ratio of the effective mean free path and the scale length
of the temperature gradient (dotted line in Fig. 6 (b)) on
the magnetic field strength.

agrees well with the results of the linear model for any en-
ergy range. In the magnetic field, the electrons move at a
drift speed of the guiding center of the cyclotron motion,

and the effective electron mean free path becomes shorter
than the scale length of the temperature gradient in strong
magnetic fields. The electron distribution functions tend
to become almost Maxwellian locally under a strong mag-
netic field.
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