[Table of Contents]

Plasma and Fusion Research

Volume 9, 1403002 (2014)

Regular Articles


Formulation of Two-Dimensional Transport Modeling in Tokamak Plasmas
Haruki SETO and Atsushi FUKUYAMA
Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
(Received 28 July 2013 / Accepted 2 December 2013 / Published 31 January 2014)

Abstract

A two-dimensional transport modeling applicable to a whole tokamak plasma is proposed. The model is derived from the multi-fluid equations and Maxwell's equations and the moment approach of neoclassical transport is employed as fluid closures. The multi-fluid equations consist of the equations for particle density, momentum, energy and total heat flux transport for each plasma species. The expressions of the parallel viscosity and heat viscosity are extended in order to be applicable to both inside and outside of the last closed flux surface. It is confirmed that our neoclassical transport model is consistent with the ordinary flux-surface-averaged one-dimensional neoclassical transport model. Our transport equations are coupled with the electromagnetic equations in order to describe the time evolution of tokamak plasmas. The procedure for coupling a transport solver based on our transport model with an equilibrium solver is also briefly described.


Keywords

two-dimensional transport modeling, neoclassical transport, multi-fluid equation

DOI: 10.1585/pfr.9.1403002


References

  • [1] G.V. Pereverzev and P.N. Yushmanov, ASTRA - Automated System for TRansport Analysis, Rep. Max-Planck-IPP 5/98 (2002).
  • [2] J.F. Artaud et al., Nucl. Fusion 50, 043001 (2010).
  • [3] G. Cennachi and A. Taroni, JET Rep. JET-IR(88) 03 (1998).
  • [4] H. Shirai et al., Plasma Phys. Control. Fusion 42, 1193 (2000).
  • [5] M. Honda and A. Fukuyama, Nucl. Fusion 46, 580 (2006).
  • [6] N. Hayashi et al., Nucl. Fusion 47, 682 (2007).
  • [7] M. Honda and A. Fukuyama, J. Comput. Phys. 227, 2808 (2008).
  • [8] M. Honda et al., Nucl. Fusion 50, 095012 (2010).
  • [9] ITER Physics Basis Editors et al., Nucl. Fusion 39, 2137 (1999).
  • [10] E.J. Doyle et al., Nucl. Fusion 47, S18 (2007).
  • [11] F.L. Hinton and R.D. Hazeltine, Rev. Mod. Phys. 48, 239 (1976).
  • [12] S.P. Hirshman and D.J. Sigmar, Nucl. Fusion 21, 1079 (1981).
  • [13] B.J. Braams, NET Report No.68, January (1987).
  • [14] B.J. Braams, Contrib. Plasma Phys. 36, 276 (1996).
  • [15] A.V. Chankin et al., Nucl. Fusion 47, 479 (2007).
  • [16] T.D. Rognlien et al., Phys. Plasmas 6, 1851 (1999).
  • [17] K. Shimizu et al., Nucl. Fusion 49, 065028 (2009).
  • [18] H. Kawashima et al., Nucl. Fusion 49, 065007 (2009).
  • [19] S.I. Braginskii, Transport Processes in a Plasma, in Rev. Mod. Phys. Vol.1 (Consultants Bureau, New York, 1965).
  • [20] V.A. Rhozhansky et al., Nucl. Fusion 41, 387 (2001).
  • [21] M. Yagi et al., Contrib. Plasma Phys. 52, 372 (2012).
  • [22] S. Wiesen et al., JET ITC-Report 2008 (2008).
  • [23] S. Wiesen et al., Contrib. Plasma Phys. 48, 201 (2008).
  • [24] W.D. D'haeseleer et al., Flux Coordinates and Magnetic Field Structure (Springer-Verlag, Berlin Heidelberg, 1991).
  • [25] R.D. Hazeltine and J.D. Meiss, Plasma Confinement (Dover publications, inc., New York, 2003).
  • [26] J. Wesson, Tokamaks fourth edition (Oxford science publications, 2011).
  • [27] K.C. Shaing, Phys. Fluids 31, 2249 (1988).
  • [28] S. Itoh, Phys. Fluids B 4, 796 (1992).
  • [29] P. Helander and D.J. Sigmar, Collisional Transport in Magnetized Plasmas (Cambridge University Press, Cambridge, 2002).
  • [30] J.D. Callen et al., Phys. Plasmas 17, 056113 (2010).
  • [31] R.A. Dory and Y.K.M. Peng, Nucl. Fusion 17, 1 (1977).
  • [32] J.F. Clarke and D.J. Sigmar, Phys. Rev. Lett. 38, 70 (1977).
  • [33] D.B. Albert, Nucl. Fusion 20, 939 (1980).

This paper may be cited as follows:

Haruki SETO and Atsushi FUKUYAMA, Plasma Fusion Res. 9, 1403002 (2014).