[Table of Contents]

Plasma and Fusion Research

Volume 7, 2403094 (2012)

Regular Articles


Kinetic Simulations of Neoclassical and Anomalous Transport Processes in Helical Systems
Hideo SUGAMA1,2), Tomohiko WATANABE1,2), Masanori NUNAMI1,2), Shinsuke SATAKE1,2), Seikichi MATSUOKA1) and Kenji TANAKA1)
1)
National Institute for Fusion Science, Toki 509-5292, Japan
2)
The Graduate University for Advanced Studies (SOKENDAI), Toki 509-5292, Japan
(Received 10 January 2011 / Accepted 18 May 2012 / Published 26 July 2012)

Abstract

Drift kinetic and gyrokinetic theories and simulations are powerful means for quantitative predictions of neoclassical and anomalous transport fluxes in helical systems such as the Large Helical Device (LHD). The δf Monte Carlo particle simulation code, FORTEC-3D, is used to predict radial profiles of the neoclassical particle and heat transport fluxes and the radial electric field in helical systems. The radial electric field profiles in the LHD plasmas are calculated from the ambipolarity condition for the neoclassical particle fluxes obtained by the global simulations using the FORTEC-3D code, in which effects of ion or electron finite orbit widths are included. Gyrokinetic Vlasov simulations using the GKV code verify the theoretical prediction that the neoclassical optimization of helical magnetic configuration enhances the zonal flow generation which leads to the reduction of the turbulent heat diffusivity χi due to the ion temperature gradient (ITG) turbulence. Comparisons between results for the high ion temperature LHD experiment and the gyrokinetic simulations using the GKV-X code show that the χi profile and the poloidal wave number spectrum of the density fluctuation obtained from the simulations are in reasonable agreements with the experimental results. It is predicted theoretically and confirmed by the linear GKV simulations that the E × B rotation due to the background radial electric field Er can enhance the zonal-flow response to a given source. Thus, in helical systems, the turbulent transport is linked to the neoclassical transport through Er which is determined from the ambipolar condition for neoclassical particle fluxes and influences the zonal flow generation leading to reduction of the turbulent transport. In order to investigate the Er effect on the regulation of the turbulent transport by the zonal flow generation, the flux-tube bundle model is proposed as a new method for multiscale gyrokinetic simulations.


Keywords

neoclassical transport, anomalous transport, ITG turbulence, zonal flow, gyrokinetic simulation, helical system, LHD

DOI: 10.1585/pfr.7.2403094


References

  • [1] Y. Idomura, T.-H. Watanabe and H. Sugama, Comptes Rendus Physique 7, 650 (2006).
  • [2] X. Garbet, Y. Idomura, L. Villard and T.-H. Watanabe, Nucl. Fusion 50, 043002 (2010).
  • [3] H. Sugama, M. Okamoto, W. Horton and M. Wakatani, Phys. Plasmas 3, 2379 (1996).
  • [4] P. Helander and D.J. Sigmar, Collisional Transport in Magnetized Plasmas (Cambridge University Press, Cambridge, 2002).
  • [5] S.P. Hirshman and D.J. Sigmar, Nucl. Fusion 21, 1079 (1981).
  • [6] W. Horton, Rev. Mod. Phys. 71, 735 (1999).
  • [7] W.M. Tang, Nucl. Fusion 18, 1089 (1978).
  • [8] A.J. Brizard and T.S. Hahm, Rev. Mod. Phys. 79, 421 (2007).
  • [9] E.A. Frieman and L. Chen, Phys. Fluids 25, 502 (1982).
  • [10] H. Sugama, Phys. Plasmas 7, 466 (2000).
  • [11] M. Wakatani, Stellarator and Heliotron Devices (Oxford University Press, Oxford, 1998).
  • [12] A. Komori, H. Yamada, S. Imagawa et al., Fusion Sci. Technol. 58, 1 (2010).
  • [13] S. Satake, H. Sugama and T.-H. Watanabe, Nucl. Fusion 47, 1258 (2007).
  • [14] S. Satake, M. Okamoto, N. Nakajima, H. Sugama and M. Yokoyama, Plasma Fusion Res. 1, 002 (2006).
  • [15] T.-H. Watanabe, H. Sugama and S. Ferrando-Margalet, Phys. Rev. Lett. 100, 195002 (2008).
  • [16] T.-H. Watanabe, H. Sugama and S. Ferrando-Margalet, Nucl. Fusion 47, 1383 (2007).
  • [17] M. Nunami, T.-H. Watanabe and H. Sugama, Plasma Fusion Res. 5, 016 (2010).
  • [18] M. Nunami, T.-H. Watanabe, H. Sugama and K. Tanaka, Plasma Fusion Res. 6, 1403001 (2011).
  • [19] M. Nunami, T.-H. Watanabe, H. Sugama and K. Tanaka, Phys. Plasmas 19, 042504 (2012).
  • [20] K.C. Shaing, Phys. Fluids 27, 1567 (1984).
  • [21] S. Toda and K. Itoh, J. Plasma Fusion Res. 78, 582 (2002).
  • [22] M. Yokoyama, A. Wakasa, S. Murakami et al., Fusion Sci. Technol. 58, 269 (2010).
  • [23] H. Maaßberg, C.D. Beidler, U. Gasparino et al., Phys. Plasmas 7, 295 (2000).
  • [24] S. Matsuoka, S. Satake, M. Yokoyama, A. Wakasa and S. Murakami, Phys. Plasmas 18, 032511 (2011).
  • [25] S. Matsuoka, S. Satake, M. Yokoyama and A. Wakasa, Plasma Fusion Res. 6, 123016 (2011).
  • [26] M. Yokoyama, H. Maaßberg, C.D. Beidler et al., Nucl. Fusion 47, 1213 (2007).
  • [27] M.A. Beer, S.C. Cowley and G.W. Hammet, Phys. Plasmas 2, 2687 (1995).
  • [28] A. Hasegawa and M. Wakatani, Phys. Rev. Lett. 59, 1581 (1987); H. Sugama, M. Wakatani and A. Hasegawa, Phys. Fluids 31, 1601 (1988).
  • [29] Z. Lin, T.S. Hahm, W.W. Lee, W.M. Tang and R.B. White, Science 281, 1835 (1998).
  • [30] P.H. Diamond, S.-I. Itoh, K. Itoh and T.S. Hahm, Plasma Phys. Control. Fusion 47, R35 (2005).
  • [31] K. Itoh, S.-I. Itoh, P.H. Diamond et al., Phys. Plasmas 13, 055502 (2006).
  • [32] A. Fujisawa, K. Itoh, H. Iguchi et al., Phys. Rev. Lett. 93, 165002 (2004).
  • [33] M.N. Rosenbluth and F.L. Hinton, Phys. Rev. Lett. 80, 724 (1998).
  • [34] H. Sugama and T.-H. Watanabe, Phys. Plasmas 13, 012501 (2006).
  • [35] P. Helander, A. Mishchenko, R. Kleiber and P. Xanthopoulos, Plasma Phys. Control. Fusion 53, 054006 (2011).
  • [36] P. Xanthopoulos, A. Mischchenko, P. Helander, H. Sugama and T.-H. Watanabe, Phys. Rev. Lett. 107, 245002 (2011).
  • [37] N. Winsor, J.L. Johnson and J.J. Dawson, Phys. Fluids 11, 2248 (1968).
  • [38] H. Yamada, A. Komori, N. Ohyabu et al., Plasma Phys. Control. Fusion 43, A55 (2001).
  • [39] S.P. Hirshman and O. Betancourt, J. Comput. Phys. 96, 99 (1991).
  • [40] K. Ida, M. Yoshinuma, M. Osakabe et al., Phys. Plasma 16, 056111 (2009).
  • [41] K. Tanaka, C.A. Michael, L.N. Vyacheslavov et al., Plasma Fusion Res. 5, S2053 (2010).
  • [42] H. Sugama and T.-H. Watanabe, Phys. Plasmas 11, 3068 (2004).
  • [43] K. Tanaka, C.A. Michael, L.N. Vyacheslavov et al., Rev. Sci. Instrum. 79, 10E702 (2008).
  • [44] R.D. Hazeltine and J.D. Meiss, Plasma Confinement (Addison-Wesley, Redwood City, 1992) p. 298.
  • [45] H. Sugama, T.-H. Watanabe and S. Ferrando-Margalet, Plasma Fusion Res. 3, 41 (2008).
  • [46] H. Sugama and T.-H. Watanabe, Phys. Plasmas 16, 056101 (2009).
  • [47] H. Sugama and T.-H. Watanabe, Control. Plasma Phys. 50, 571 (2010).
  • [48] H.E. Mynick and A.H. Boozer, Phys. Plasmas 14, 072507 (2007).
  • [49] T.-H. Watanabe and H. Sugama, Nucl. Fusion 51, 123003 (2011).
  • [50] J. Anderson and Y. Kishimoto, Phys. Plasmas 13, 102304 (2006).
  • [51] K. Uzawa, Y. Kishimoto and J.Q. Li, J. Phys. Soc. Jpn. 77, 034501 (2008).

This paper may be cited as follows:

Hideo SUGAMA, Tomohiko WATANABE, Masanori NUNAMI, Shinsuke SATAKE, Seikichi MATSUOKA and Kenji TANAKA, Plasma Fusion Res. 7, 2403094 (2012).