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Drift kinetic and gyrokinetic theories and simulations are powerful means for quantitative predictions of
neoclassical and anomalous transport fluxes in helical systems such as the Large Helical Device (LHD). The
δ f Monte Carlo particle simulation code, FORTEC-3D, is used to predict radial profiles of the neoclassical
particle and heat transport fluxes and the radial electric field in helical systems. The radial electric field profiles
in the LHD plasmas are calculated from the ambipolarity condition for the neoclassical particle fluxes obtained
by the global simulations using the FORTEC-3D code, in which effects of ion or electron finite orbit widths
are included. Gyrokinetic Vlasov simulations using the GKV code verify the theoretical prediction that the
neoclassical optimization of helical magnetic configuration enhances the zonal flow generation which leads to the
reduction of the turbulent heat diffusivity χi due to the ion temperature gradient (ITG) turbulence. Comparisons
between results for the high ion temperature LHD experiment and the gyrokinetic simulations using the GKV-X
code show that the χi profile and the poloidal wave number spectrum of the density fluctuation obtained from
the simulations are in reasonable agreements with the experimental results. It is predicted theoretically and
confirmed by the linear GKV simulations that the E × B rotation due to the background radial electric field
Er can enhance the zonal-flow response to a given source. Thus, in helical systems, the turbulent transport is
linked to the neoclassical transport through Er which is determined from the ambipolar condition for neoclassical
particle fluxes and influences the zonal flow generation leading to reduction of the turbulent transport. In order
to investigate the Er effect on the regulation of the turbulent transport by the zonal flow generation, the flux-tube
bundle model is proposed as a new method for multiscale gyrokinetic simulations.
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1. Introduction
Quantitative predictions of transport fluxes of parti-

cles, momentum, and heat in magnetically confined plas-
mas are a critical issue for the design of fusion reactors.
In high-temperature fusion plasmas, where particle mean
free paths are much larger than system sizes, kinetic effects
such as particle orbits, finite gyroradii, and Landau damp-
ing need to be taken into account for accurate analyses of
plasma transport processes. These effects can be properly
described by kinetic model which treats particle distribu-
tion functions on phase space. However, kinetic model is
generally more complicated to use than fluid model be-
cause the phase-space dimension is higher than the real-
space dimension. Therefore, a large number of kinetic
transport studies are done by with the help of large-scale
computer simulation [1, 2].

In magnetically confined plasmas, there exist colli-
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sional and anomalous (or turbulent) transport processes. In
the presence of plasma density and temperature gradients,
the particle distribution function F deviates from the local
Maxwellian fM and is written as

F = fM + f1 + f̂1, (1)

where f1 and f̂1 represent the quasisteady and fluctuating
parts of the perturbed distribution function [3]. Using the
gyroradius ρ and the equilibrium gradient scale length L,
the magnitudes of f1 and f̂1 are scaled as

f1
fM
∼ f̂1

fM
∼ ρ

L
.

Charged particles gyrate around the magnetic field and the
gyrophase angle can be chosen as one of the phase space
coordinates. Then, the quasisteady perturbed distribution
function f1, which is associated with collisional (classi-
cal and neoclassical) transport [4], can be divided into the
gyrophase-averaged part f 1 and the gyrophase-dependent
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part f̃1:

f1 = f 1 + f̃1.

The gyrophase-dependent part f̃1, which describes the par-
ticle gyro-motion, gives the diamagnetic plasma flows
and friction forces in the direction perpendicular to the
magnetic field, from which classical transport fluxes of
particles and heat are derived. The gyrophase-averaged
part f 1 represents the guiding-center distribution function,
from which neoclassical transport fluxes are evaluated.
The guiding-center distribution function f 1 is governed by
the drift kinetic equation [5]. In addition to the above-
mentioned classical and neoclassical transport, anomalous
transport results from turbulent fluctuations driven by mi-
croinstabilities [6, 7]. Anomalous or turbulent transport
fluxes are derived from the fluctuating part f̂1 of the per-
turbed distribution function, which is determined by solv-
ing the gyrokinetic equation [8–10].

Neoclassical and anomalous transport processes are
strongly influenced by toroidal magnetic configurations.
In helical systems such as stellarators and heliotrons [11],
three-dimensional magnetic structures cause complex par-
ticle orbits which yield transport mechanisms different
from those in tokamaks. In this paper, recent results from
kinetic simulation studies of neoclassical and anomalous
transport in helical systems are reported. As an interesting
feature of helical plasmas, the link between neoclassical
and turbulent transport processes arises through the back-
ground radial electric field. Because of the nonaxisymme-
try, drift kinetic simulations can determine not only neo-
classical particle and heat fluxes but also the background
radial electric field from the ambipolarity condition for the
neoclassical particle fluxes. Then, the radial electric field
produces the E × B rotation of helical-ripple-trapped par-
ticles, which influences the zonal flow generation and ac-
cordingly the turbulent transport. In order to treat this ef-
fect of the E×B rotation on the turbulent transport, we pro-
pose the gyrokinetic simulation using the flux-tube bundle
model in the present work.

The rest of this paper is organized as follows. Ex-
amples of drift kinetic simulation are presented in Sec. 2,
where radial electric field profiles in Large Helical Device
(LHD) plasmas [12] are determined from the ambipolarity
condition for the neoclassical particle fluxes obtained by
using the global drift kinetic simulation code, FORTEC-
3D [13, 14]. Section 3 explains simulation studies using
gyrokinetic Vlasov simulation codes, GKV [15, 16] and
GKV-X [17–19], to investigate ion temperature gradient
(ITG) turbulence and zonal flows in LHD plasmas. In
Sec. 4, effects of macroscopic radial electric fields on mi-
croscopic zonal flows are discussed and flux-tube bundle
model is proposed for new multiscale gyrokinetic simu-
lation to verify the enhancement of zonal flow generation
and resultant turbulent transport regulation predicted when
increasing the radial electric field. Finally, conclusions are
given in Sec. 5.

2. Drift Kinetic Simulation of Neo-
classical Transport in Helical Sys-
tems
Particles in helical systems are categorized into three

classes which show different types of orbits [11]. Two
classes of them are passing particles and toroidally trapped
particles similar to those in tokamaks while a remaining
one consists of particles trapped locally within helical rip-
ples. Drift motion of helical-ripple-trapped particles makes
dependence of neoclassical transport on the collision fre-
quency ν and the radial electric field Er very different from
that in tokamaks. In the weakly collisional regime, the
neoclassical diffusion coefficient induced by helical-ripple-
trapped particles [20, 21] is qualitatively expressed by

D ∼ √εhv2
dr

νeff

ν2eff + ω
2
E×B

∝
{
ν−1

eff (νeff � |ωE×B|)
νeff/ω

2
E×B (νeff � |ωE×B|) , (2)

where
√
εh, vdr, and νeff ∼ ν/εh represent the fraction, the

averaged radial drift velocity, and the effective collision
frequency of helical-ripple-trapped particles, respectively,
and ωE×B ∼ −cEr/rB denotes the frequency of the E × B
poloidal rotation.

It is well-known that, in tokamaks, the neoclassi-
cal transport fluxes of particles are intrinsically ambipo-
lar; the ambipolarity condition is automatically satisfied
by the neoclassical particle fluxes for any radial electric
field Er [4, 5]. On the other hand, because of the above-
mentioned ripple transport, the ambipolarity of the neo-
classical transport fluxes is nontrivial in helical systems
and the radial electric field Er can be determined from
the neoclassical ambipolarity condition [11] which is writ-
ten for a pure plasma consisting of electrons and a single
species of ions as

Γncl
e (Er) = Γ

ncl
i (Er). (3)

Here, the functions Γncl
e and Γncl

i of Er represent the neo-
classical particle fluxes of electrons and ions, respectively.
It was confirmed that the radial electric fields predicted
from the neoclassical ambipolarity condition are in rea-
sonable agreement with experimental results in helical de-
vices [22,23] even when the particle fluxes themselves are
dominated by anomalous transport. This fact is under-
standable by noting that the turbulent particle fluxes pre-
dicted from the gyrokinetic model are intrinsically ambipo-
lar to the leading order in the gyroradius expansion [3] and
therefore they do not contribute to the ambipolarity condi-
tion for both helical systems and tokamaks.

A neoclassical transport simulation code, FORTEC-
3D, has been developed by Satake et al., which is appli-
cable to general three-dimensional configurations [13, 14].
The FORTEC-3D uses the δ f Monte Carlo method and
gives a global solution of the drift kinetic equation, which
is written as
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∂ f 1

∂t
+ v‖b · ∇ f 1 + vd · ∇ f 1 + vd · ∇ fM = C( f 1), (4)

where vd is the guiding-center drift velocity, C is
the linearized collision operator, f 1 represents the per-
turbed guiding-center distribution function on the five-
dimensional phase space, and the phase space coordinates
are given by the guiding-center position (r, θ, ζ), the par-
ticle energy E ≡ mv2/2 + eΦ, and the magnetic moment
μ ≡ mv2⊥/(2B). The third term vd · ∇ f 1 on the right-hand
side of Eq. (4) contains nonlocal effects due to finite orbit
widths (FOWs). The radial electric field Er is also calcu-
lated by FORTEC-3D solving

1
4π

〈
|∇r|2

⎛⎜⎜⎜⎜⎝1 + c2

v2
A

⎞⎟⎟⎟⎟⎠
〉
∂Er

∂t
= e

(
Γncl

e − Γncl
i

)
, (5)

with the neoclassical particle fluxes obtained by substitut-
ing f 1 into

Γncl =

〈∫
d3v f 1vd · ∇r

〉
. (6)

Figure 1 shows profiles of the radial electric field in
the LHD configuration obtained from the global neoclassi-
cal transport simulations using FORTEC-3D and from the
ambipolarity condition using the local neoclassical trans-
port model. In the simulations for the cases of Fig. 1, the
magnetic field strength on the magnetic axis and the cen-
tral densities and temperatures for electrons and ions are
given by B0 = 1.65 T, ne(0) = ni(0) = 2 × 1018 m−3, and
Te(0) = Ti(0) = 1 keV. Under the conditions considered in
Fig. 1, the global simulations are done only for ions while
the the local neoclassical transport model is used for elec-
trons, the FOW effect of which is negligibly small. De-
tails of density and temperature profiles used in the sim-
ulations are found in Ref. [14]. The major radius of the
vacuum magnetic axis position is given by Rax = 3.7 m
and Rax = 3.6 m for the cases of top and bottom panels
of Fig. 1, respectively. Neoclassical transport is reduced in
the inward-shifted magnetic configuration with the vacuum
magnetic axis position Rax = 3.6 m than in the case with
Rax = 3.7 m because orbits of helical-ripple-trapped parti-
cles show larger radial displacements in the latter case. The
difference between the global simulation and local model
are not evident near the magnetic axis where helical ripples
are small. For the radial region r/a ≥ 0.4, the difference
becomes large because of the ion FOW effect especially for
the case of Rax = 3.7 m, where the orbit widths of ripple-
trapped particles are wider than those for Rax = 3.6 m.
Thus, the FOW effect tends to enhance the magnitude of
the radial electric field Er determined by the ambipolarity
condition for the neoclassical particle fluxes. However, it
is found that the difference between the resultant ambipo-
lar neoclassical particle fluxes from the local model and the
FORTEC-3D is not so large as the change in Er (see Fig. 3
in Ref. [14]).

Fig. 1 Profiles of the radial electric field Er in the LHD con-
figuration obtained from the global neoclassical transport
simulation using FORTEC-3D (red triangles) and from
the ambipolarity condition using the local neoclassical
transport model (open circles).

The FORTEC-3D code is also used by Matsuoka et
al. [24,25] to investigate FOW effects of electron drift mo-
tion on the radial electric field formation in Core Electron-
Root Confinement (CERC) plasmas [26]. The CERC plas-
mas obtained in several helical devices are characterized
by their high electron temperature (Te) and steep Te gra-
dient in the core region, and strong positive radial electric
field (Er > 0) called the electron root. Comparisons are
made between the Er profiles obtained from the FORTEC-
3D simulation, the local model, and the experiment for the
CERC plasma in LHD. It is confirmed that the difference
between the FORTEC-3D simulation and the local model
due to the electron FOW effect becomes large in the core
region where the steep Te gradient appears. The Er pro-
file obtained from the FORTEC-3D simulation shows a fair
agreement with the experimental result except for the edge
region where stochastic magnetic fields neglected in the
simulation may cause additional electron transport.

As mentioned above, the FOW effect generally en-
hances the negative Er for high-Ti plasmas with Ti ≥ Te

and it also reshapes the strong positive Er profile for CERC
plasmas with high Te although, in both cases, the resultant
ambipolar neoclassical particle fluxes are found to show
smaller changes due to the FOW effect. We also note that,
in general, the total transport is dominated by turbulent
transport. Thus, the FOW effect is expected to influence
the plasma confinement not by changing the neoclassical
transport fluxes but by altering Er which can regulate the
turbulent transport as discussed in Sec. 4.
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3. Gyrokinetic Vlasov Simulation
of ITG Turbulent Transport and
Zonal Flows in LHD Plasmas
The ITG turbulence is governed by the gyrokinetic

equation for the perturbed ion gyrocenter distribution func-
tion δ fi, [

∂

∂t
+ (v‖b + vdi) · ∇ + c

B
(b × ∇φ) · ∇

]
δ fi

= (v∗i − vdi − v‖b) · e∇φ
Ti

fiM + Ci(δ fi), (7)

and the quasineutrality condition which is represented in
the perpendicular wave number vector (k⊥) space as∫

d3v J0(k⊥v⊥/Ωi)δ fik⊥ −
[
1 − Γ0

(
k2
⊥ρ

2
ti

)] eφk⊥

Ti

=
e

Te

(
φk⊥ − 〈φk⊥〉

)
, (8)

where J0 is the zeroth-order Bessel function and Γ0 is de-
fined by Γ0(b) = I0(b) exp(−b) with the zeroth-order mod-
ified Bessel function I0. The gyrophase-averaged electro-
static potential φ is included in the nonlinear term on the
left-hand side of Eq. (7). The right- and left-hand sides
of Eq. (8) represent the perturbed ion and electron densi-
ties, respectively. Here, for the ITG mode, electrons are
assumed to make an adiabatic response to the electrostatic
potential. The fluctuation part f̂1 of the particle distribution
function in Eq. (1) is given in terms of the perturbed gyro-
center distribution function δ f and the potential fluctuation
φ as

f̂1k⊥ = δ fk⊥ exp(−ik⊥ · ρ)
− eφk⊥

T
[
1 − J0(k⊥ρ) exp(−ik⊥ · ρ)] , (9)

where ρ ≡ b × v/Ω denotes the gyroradius vector. Simu-
lation studies on ITG turbulence and zonal flows in helical
systems are done by using the gyrokinetic Vlasov codes
(GKV and GKV-X) which have been developed by Watan-
abe, Nunami et al. [15–19] The GKV and GKV-X codes
solve Eqs. (7) and (8) over a toroidal flux-tube domain [27]
by using an Eulerian scheme with high phase-space reso-
lution.

It is well-known that turbulent transport can be reg-
ulated by zonal flows [15, 28–36] which are generated by
turbulent fluctuations themselves. Efficiency of the zonal-
flow generation due to the ITG turbulence is described by
the response function K(t). The function K(t) relates the
response of the zonal-flow potential φk(t) at time t to an
initially given source φk(0) with φk(t) = K(t)φk(0), where
k is the radial wave number. It is theoretically shown that
K(t) consists of the short- and long-time response parts
denoted by KGAM(t) and KL(t) [34]. The short-time re-
sponse part KGAM(t) represents geodesic acoustic mode
(GAM) oscillations [37] which vanishes due to the Lan-
dau damping in the long time limit t → +∞. The long-
time response partKL(t), which shows slow temporal vari-

ations, is more important for regulation of turbulent trans-
port than KGAM(t). For helical systems such as the LHD,
the collisionless long-time response functionKL(t) is writ-
ten as [34]

KL(t) =
1 − (2/π)1/2

〈
(2εH)1/2{1 − gi1(t, θ)}

〉
1 +G + E(t)/

(
n0〈k2⊥ρ2

ti〉
) , (10)

where definitions of εH, gi1(t, θ), G, and E(t) are found
in Ref. [34] and 〈· · · 〉 represents the flux-surface average.
Equation (10) is derived for long radial wave numbers sat-
isfying kρti � 1, where ρti ≡ c(miTi)1/2/(eB) denotes the
thermal ion gyroradius. In the denominator on the right-
hand side of Eq. (10), the geometrical factor G is associ-
ated with shielding of the zonal-flow potential by toroidally
trapped particles while E(t) represents the shielding ef-
fect due to helical-ripple trapped particles. The validity of
Eq. (10) is verified by comparison to the linear gyrokinetic
simulation for the zonal-flow potential [34].

It is expected from Eq. (10) that zonal-flow generation
is enhanced by neoclassical optimization which reduces ra-
dial drift of helical-ripple-trapped particles. This theoret-
ical prediction is confirmed by using the GKV code for
gyrokinetic simulations of ITG turbulent transport in the
helical magnetic fields corresponding to the standard and
neoclassically-optimized LHD configurations [15]. For
the neoclassically-optimized configuration with an inward-
shifted LHD plasma, larger zonal-flow generation and
smaller turbulent ion heat transport are obtained by the
simulation than for the standard configuration. These the-
oretical and simulation results are consistent with the LHD
experiments [38] which show that not only neoclassical but
alsoanomalous transport is reduced in inward-shifted plas-
mas even though the inward shift increases unfavorable
magnetic curvature to destabilize pressure-gradient-driven
instabilitiessuch as the ITG mode. Direct comparisons
between gyrokinetic simulations and experiments can be
made by the GKV-X code [17–19] which uses detailed
geometric data of three-dimensional MHD equilibria ob-
tained from the VMEC code [39]. The first validation test
of the GKV-X code is done against the high-Ti LHD ex-
periment #88343 [40, 41]. Since a Ti profile with a steep
gradient and a very flattened density profile are observed in
this experiment, trapped electron modes (TEMs) are sta-
bilized and turbulent transport is anticipated to be domi-
nantly driven by pure ITG modes which are verified to be
considerably unstable in the radial region 0.3 < r/a < 0.9
by the linear GKV-X simulations [18].

Figure 2 shows turbulent potential structures around
r/a = 0.65 obtained by the nonlinear GKV-X simulation
for the LHD experiment #88343. Three red open sym-
bols in Fig. 3 show the turbulent ion heat diffusivity χi at
r/a = 0.46, 0.65, and 0.83 given by the GKV-X simula-
tions of ITG turbulence under the conditions correspond-
ing to the experiment. Error bars attached to these symbols
represent fluctuations of χi in the steady-state turbulence
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Fig. 2 Turbulent potential structures around r/a = 0.65 obtained
by the nonlinear GKV-X simulation for in the LHD ex-
periment #88343.

Fig. 3 Radial profiles of the ion heat diffusivities. The solid
curve represents the turbulent heat diffusivity obtained by
subtracting the neoclassical heat diffusivity from the total
heat diffusivity estimated by the LHD experiment #88343
(dotted curve). The red symbols represent the turbulent
heat diffusivities at r/a = 0.46, 0.65, and 0.83 calculated
by the GKV-X simulations.

produced by the simulations. In Fig. 3, a solid curve repre-
sents the turbulent heat diffusivity obtained by subtracting
the neoclassical heat diffusivity from the total heat diffusiv-
ity estimated by the experiment (dotted curve). Error bars
for these curves are caused by inaccuracy of the observed
ion temperature gradient. We see that the GKV-X simula-
tions reproduce the turbulent ion heat diffusivity χi given
by the experiment fairly well except that χi near the edge
(r/a = 0.83) is significantly underestimated by the simu-
lation. Plasma beta values at r/a = 0.46, 0.65, and 0.83
are roughly given by β ∼ 0.4 %, 0.3 %, and 0.2 %, respec-
tively. For these low beta values, electromagnetic microin-
stabilities such as kinetic ballooning modes (KBMs) are
predicted to be linearly stable while the ITG mode growth
rates are expected to be slightly reduced due to electromag-
netic effects according to Ref. [42]. Therefore, the present

GKV-X simulation results based on the electrostatic model
are not considered to be drastically changed by electro-
magnetic effects although elaborate studies using the elec-
tromagnetic model remain as future tasks.

For the LHD experiment #88343, poloidal wave num-
ber spectra of the turbulent density fluctuation obtained
from the phase contrast imaging (PCI) measurement [43]
and from the simulation are compared with each other [19].
The both spectra show similar shapes for high poloidal
wave numbers kθ > 0.5ρ−1

ti . The peak position of the spec-
trum obtained from the experiment is found at a higher
poloidal wave number than that obtained from the simu-
lation. However, this quantitative difference appearing in
the low poloidal wave number spectra is not conclusive
when we take account of a large ambiguity of the exper-
imental results due to the cutoff at kθ ∼ 0.4ρ−1

ti and coarse
resolution in the PCI measurement for low poloidal wave
numbers. The above-mentioned results showing reason-
able agreements between the LHD experiment and simula-
tions encourage us to further gyrokinetic simulation studies
for anomalous transport in helical systems.

The GKV-X simulations for the LHD experiment
#88343 also show that zonal flows are a critical factor to
determine the turbulent ion heat diffusivity χi. It is shown
from the nonlinear simulation results [19] that χi is ap-
proximately proportional to T/Z1/2 where T and Z1/2 rep-
resent the square of the turbulent potential amplitude and
the mean square root of the zonal-flow potential, respec-
tively, in the saturated turbulence state. As found by M.
Nunami et al. [19], this relation of χi to (T, Z) reflects the
fact that, even if the turbulence amplitude T has the same
value, the larger zonal flow amplitude Z causes the spectral
transfer of turbulent fluctuations into higher radial wave
number regions, in which ITG modes are less unstable and
turbulent transport occurs inefficiently. We also find that
T and Z have significant correlations with the linear ITG
growth rate and the linear zonal-flow response. Therefore,
it is expected that modeling of χi can be done by using re-
sults from linear analyses of the unstable modes and zonal
flows.

4. Radial Electric Field Effects on
Zonal Flows
In the gyrokinetic turbulence simulations explained

in the previous section, a local flux-tube domain is used
based on the idea of the ballooning representation [44], in
which only the neighborhood of a single field line labeled
by α ≡ θ − ζ/q(r) is considered. For helical systems, the
field line label α explicitly appears in the gyrokinetic equa-
tion in contrast to tokamak cases although α is regarded as
a fixed parameter in the local flux-tube model. However,
even if the zonal-flow potential φ is independent of α, the
explicit appearance of α in the magnetic drift terms of the
gyrokinetic equation causes the perturbed gyrocenter dis-
tribution function δ f to depend on α. Therefore, when tak-
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ing account of the equilibrium or macroscopic radial elec-
tric field Er produced by the ambipolarity condition for
neoclassical radial particle fluxes (see Sec. 2), the E × B
rotation term, ωE×B∂δ f /∂α, enters the zonal-flow compo-
nent of the gyrokinetic equation and influences the zonal-
flow response in helical configurations. It is theoretically
predicted that E × B rotation induced by Er enhances the
zonal-flow potential amplitude by reducing radial displace-
ments of helical-ripple-trapped particles [45–48]. When
the Er effect is included, the collisionless long-time re-
sponse of the zonal-flow potential φk(t) to a initially given
source φk(0) is given for kρti � 1 by [46]

φk(t) =
φk(0)

1 +Gp +Gt + M−2
p (Ght +Gh)(1 + Te/Ti)

,

(11)

where geometrical factors Gp, Gt, Ght, and Gh represent
shielding effects of neoclassical polarization due to differ-
ent types of particle orbits existing in helical systems and
their definitions are given in Ref. [46]. The radial elec-
tric field Er enters the denominator in the right-hand side
of Eq. (11) through the poloidal Mach number defined by
Mp ≡ |(cErB0)/(rvti/Rq)|where q denotes the safety factor.
We see from Eq. (11) that zonal-flow generation can be en-
hanced when the geometrical factors Ght and Gh associated
with orbits of helical-ripple-trapped particles are reduced
by neoclassical optimization and/or when Mp is increased
by increasing Er or using ions with a heavier mass. Since
a higher zonal-flow response is predicted for a heavier ion
mass under the identical conditions on the magnitude of
Er and the magnetic geometry, the turbulent transport is
expected to show a more favorable ion-mass dependence
than the conventional gyro-Bohm scaling [46]. In order
to investigate the Er effect, the simulation domain needs
to be extended in the α-direction from the flux tube to the
shell region covering the whole magnetic flux surface. Lin-
ear gyrokinetic simulations of the zonal-flow response are
done by the extended GKV code [49], from which it is con-
firmed that the linear zonal-flow response is enhanced by
increasing Er as predicted by Eq. (11).

Because of helical ripples, gyrokinetic simulation
generally requires higher resolution of the phase space for
helical systems than for tokamaks. Especially, nonlinear
gyrokinetic simulation for the shell region over the whole
flux surface in helical systems needs much more compu-
tational memory and time than for a single flux-tube do-
main. Here, we propose a flux-tube bundle model as a new
method for multiscale gyrokinetic simulation which treats
the macroscopic E × B rotation and the microscopic zonal
flows with a smaller computational burden than direct sim-
ulation for the whole shell region. Based on the scale sep-
aration concept, we use the macroscopic (or large scale
length) coordinates (r, α, z) and the microscopic (or small
scale length) coordinates (x, y). Here, r, α ≡ θ − ζ/q(r),
and z ≡ θ represent the radial coordinate, the field-line

Fig. 4 The flux-tube bundle model. A bundle of flux tubes used
for simulation domains are shown in red color.

label, and the poloidal angle, respectively, which are in-
cluded in the equilibrium (or background) variables; for
example, the equilibrium magnetic field strength is written
as B = B(r, α, z). The (x, y) coordinates represent the same
as (r, α) although (x, y) are used to describe microscopic
scale variation of turbulent variables on the plane perpen-
dicular to the magnetic field. For example, the fluctuating
potential is written as φ = φ(x, y, z; r, α) where (x, y) and
(r, α) are treated as independent pairs of coordinates to sep-
arately represent microscopic and macroscopic variations.

Figure 4 shows a bundle of flux tubes distributed over
a given flux surface labeled by the macroscopic radial co-
ordinate r. Each flux tube is specified by assigning cer-
tain constant values to r and α. We note that z ≡ θ is
regarded as the coordinate along the magnetic field line
because the direction parallel to the magnetic field is given
by changing z with all other coordinates fixed. When mi-
croscopic fluctuations are considered for each flux tube,
unstable modes such as the ITG instability need to have fi-
nite wave numbers ky � 0 in the y-direction. For ky = 0,
fluctuations give linearly stable modes such as zonal flows.
The gyrokinetic equation for the zonal (ky = 0) compo-
nent of the perturbed ion gyrocenter distribution function
δ fi(x, z, E, μ; r, α) is written as[

∂

∂t
+

v‖
qR
∂

∂z
+ vdr

∂

∂x

+ωE×B
∂

∂α
−Ci

]
δ fi(x, z, E, μ; r, α)

= − e
Ti

fiM

(
v‖
qR
∂

∂z
+ vdr

∂

∂x

)
φ(x, z; r, α)

+N(φ, δ fi), (12)

where N(φ, δ fi) denotes the ky = 0 component of the
nonlinear E × B convection term that is regarded as a
source of zonal flows. The effect of the equilibrium ra-
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dial electric field Er on the zonal flow generation appears
from the E × B rotation term ωE×B∂δ fi/∂α on the left-
hand side of Eq. (12). This term causes the interaction
between the zonal (ky = 0) modes distributed over the
bundle of flux tubes with different values of α and thus
influences zonal flow generation and turbulent transport.
When different flux-tube regions are coupled through the
background E × B rotation in the flux-tube bundle model,
the perturbed distribution function is considered to show
poloidally-global structures reflecting poloidal excursions
of helical-ripple-trapped particles which cannot be grasped
by conventional single-flux-tube simulations. We expect
from this coupling that the turbulent transport processes are
necessarily linked to the neoclassical transport because the
ambipolar neoclassical particle fluxes determine the E× B
rotation which can, in turn, enhance zonal-flow generation
and accordingly regulate the turbulent transport.

Without the E × B rotation, turbulent fluctuations in
each flux-tube domain are determined independently of
those in other flux tubes in the same way as in the case of a
single flux tube simulation. In axisymmetric systems such
as tokamaks where equilibrium variables do not depend on
α, δ fi is set to be independent of α and accordingly the
E × B rotation term has no effect even if ωE×B(∝ Er) � 0.
Gyrokinetic turbulence simulation using the flux-tube bun-
dle model described above is planned to confirm the Er ef-
fect on the zonal flows and the ITG turbulent transport, and
its results will be reported elsewhere.

In the LHD experiment #88343, for which the GKV-
X simulations are done as described in Sec. 3, the data of
the background radial electric field are obtained only near
the peripheral region (r/a ≥ 0.8) (see Fig. 1 in Ref. [18]).
The maximum E×B drift velocity is given from these data
by (vE×B)max � 1.4 × 103 m/s at r/a = 0.83, which cor-
responds to the poloidal Mach number Mp � 0.028. For
this small Mach number, the enhancement of the residual
zonal flow is anticipated to be weak according to Eq. (11)
and Ref. [49]. Thus, as far as the radial electric field is
within this level of Mp, we can justify the GKV-X flux-
tube simulations in Sec. 3. However, if Mp becomes larger
by increasing the radial electric field and/or by using ions
with a heavier mass, larger zonal-flow generation and re-
sultant turbulent transport regulation are expected.

It was shown by Anderson and Kishimoto [50] and
by Uzawa et al. [51] that sheared mean flows can weaken
the generation rate of zonal flows by affecting the modula-
tional process. Such an effect of the sheared mean flow on
the zonal flow generation is not included in Eqs. (11) and
(12) where the background E × B flow shear is neglected
as a smaller term of higher order in ρ/L. The modulational
instability analysis of zonal flows including effects of the
sheared mean flow in helical systems still remains as one
of interesting and complicated subjects.

5. Conclusions
In this paper, recent results from kinetic studies on

transport processes in helical systems such as the Large
Helical Device (LHD) are reported. These results show
that drift kinetic and gyrokinetic theories and simulations
are useful tools for quantitative predictions of neoclassical
and turbulent transport fluxes with accurate treatment of
collective particles’ motion in complex three-dimensional
magnetic field structures.

In helical systems, ripple-trapped particles give a
dominant contribution to neoclassical transport although
the ripple transport can be significantly reduced with in-
creasing the radial electric field Er. In contrast to axisym-
metric systems such as tokamaks, Er profiles in helical
systems can be determined by the condition of ambipo-
lar neoclassical radial particle fluxes because of ripple-
trapped particles’ drift motion causing different depen-
dence of neoclassical transport on the collisionality ν and
Er from that in the axisymmetric case. Using the δ f Monte
Carlo particle simulation code, FORTEC-3D, which solves
the drift kinetic equation in the global toroidal region, ra-
dial profiles of the neoclassical particle and heat transport
fluxes and the radial electric field in helical systems can
be calculated. The FORTEC-3D is used to investigate ef-
fects of ion finite orbit widths (FOWs) on the neoclassical
transport and the Er profile in the LHD configurations for
the case of equal ion and electron temperatures, where the
ion FOW effect are shown to be significant under the con-
ditions corresponding to large radial excursions of ripple-
trapped particles. Neoclassical transport simulations using
the FORTEC-3D code are also done for Core Electron-
Root Confinement (CERC) plasmas with high electron
temperature Te and steep Te gradient in the core region.
Electron FOW effects and a reasonable agreement between
the Er profile obtained from the simulation and the LHD
experiment are confirmed for the core region in the CERC
plasma.

ITG turbulent transport and zonal flows in helical sys-
tems are studied by gyrokinetic Vlasov simulation codes,
GKV and GKV-X, which employ a flux tube domain. The
GKV simulations show that the turbulent heat diffusivity
χi is reduced by enhanced zonal flow generation for the
neoclassically-optimized magnetic configuration as theo-
retically predicted. The radial profile of χi and the poloidal
wave number spectrum of the density fluctuation obtained
from the high ion temperature LHD experiment #88343
are compared with the results from the GKV-X simulations
which can include precise geometrical data of MHD equi-
libria corresponding to experiments. The comparisons of
the χi profiles and the fluctuation spectra show fairly good
agreements between the simulations and the experimental
results, which imply that we are on the right track toward
further studies of anomalous transport in the LHD experi-
ments and future helical reactors based on the gyrokinetic
simulations. The GKV-X simulation results also show that
χi is approximately proportional to the ratio between the
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square of the turbulent potential amplitude and the mean
square root of the zonal-flow potential in the saturated tur-
bulence state.

It is theoretically predicted that, in helical systems, the
macroscopic or background radial electric field Er can en-
hance generation of zonal flows leading to the further re-
duction of turbulent transport and the favorable isotope ef-
fect of the ion mass. The enhanced zonal-flow response
due to the increased Er is verified by the linear GKV simu-
lations, for which the simulation domain is extended from
the flux tube to the shell region covering the whole mag-
netic flux surface. In order to confirm the Er effect on the
zonal flows and the ITG turbulent transport, the flux-tube
bundle model is proposed as a new method for multiscale
gyrokinetic turbulence simulation.

As future tasks, we plan to extend the gyrokinetic sim-
ulation codes for including the flux-tube bundle model and
other physical processes such as turbulent electron trans-
port and electromagnetic fluctuations.
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