[Table of Contents]

Plasma and Fusion Research

Volume 5, S2114 (2010)

Regular Articles

Effect of Molecular Rigidity on Micelle Formation in Amphiphilic Solution
Susumu FUJIWARA, Takashi ITOH, Masato HASHIMOTO, Hiroaki NAKAMURA1) and Yuichi TAMURA2)
Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan
Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658-8501, Japan
(Received 8 December 2009 / Accepted 5 February 2010 / Published 10 December 2010)


Micelle formation in an amphiphilic solution is investigated by a molecular dynamics simulation of coarse-grained semiflexible amphiphilic molecules with explicit solvent molecules. Our simulations show that the micellar shape changes from a cylinder to a disc as the intensity of the molecular rigidity increases. We find that the radius of gyration of the cylindrical micelle is larger than that of the disc-shaped micelle for small molecular rigidity, although the radius of gyration is almost steady even during the transition between a cylinder and a disc for large molecular rigidity. This indicates that a cylindrical micelle formed at small molecular rigidity is more anisotropic than the one obtained at large molecular rigidity. We also ascertained that a cylindrical micelle and a disc-shaped micelle coexist dynamically over a certain molecular rigidity range.


molecular dynamics simulation, molecular rigidity, micelle formation, micellar shape, amphiphilic solution

DOI: 10.1585/pfr.5.S2114


  • [1] S. Fujiwara and T. Sato, J. Chem. Phys. 107, 613 (1997).
  • [2] S. Fujiwara and T. Sato, J. Chem. Phys. 114, 6455 (2001).
  • [3] S. Fujiwara and T. Sato, Phys. Rev. Lett. 80, 991 (1998).
  • [4] S. Fujiwara and T. Sato, J. Chem. Phys. 110, 9757 (1999).
  • [5] S. Fujiwara and T. Sato, Comput. Phys. Commun. 142, 123 (2001).
  • [6] S. Fujiwara, M. Hashimoto, T. Itoh and H. Nakamura, J. Phys. Soc. Jpn. 75, 024605 (2006).
  • [7] S. Fujiwara, M. Hashimoto and T. Itoh, J. Plasma Phys. 72, 1011 (2006).
  • [8] S. Fujiwara, T. Itoh, M. Hashimoto and Y. Tamura, Mol. Simul. 33, 115 (2007).
  • [9] S. Fujiwara, T. Itoh, M. Hashimoto and R. Horiuchi, J. Chem. Phys. 130, 144901 (2009).
  • [10] J. N. Israelachvili, Intermolecular and Surface Forces (Academic Press, London, 1992) 2nd ed.
  • [11] Micelles, Membranes, Microemulsions, and Monolayers, edited by W. M. Gelbart, A. Ben-Shaul and D. Roux (Springer-Verlag, New York, 1994), pp. 1-104.
  • [12] I. W. Hamley, Introduction to Soft Matter (J. Wiley, Chichester, 2000).
  • [13] T. Miura, R. Kishi, M. Mikami and Y. Tanabe, Phys. Rev. E 63, 061807 (2001).
  • [14] T. Sakaue and K. Yoshikawa, J. Chem. Phys. 117, 6323 (2002).
  • [15] N. Yoshinaga and K. Yoshikawa, J. Chem. Phys. 127, 044902 (2007).
  • [16] R. Goetz and R. Lipowsky, J. Chem. Phys. 108, 7397 (1998).
  • [17] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).

This paper may be cited as follows:

Susumu FUJIWARA, Takashi ITOH, Masato HASHIMOTO, Hiroaki NAKAMURA and Yuichi TAMURA, Plasma Fusion Res. 5, S2114 (2010).