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Micelle formation in an amphiphilic solution is investigated by a molecular dynamics simulation of coarse-
grained semiflexible amphiphilic molecules with explicit solvent molecules. Our simulations show that the mi-
cellar shape changes from a cylinder to a disc as the intensity of the molecular rigidity increases. We find that
the radius of gyration of the cylindrical micelle is larger than that of the disc-shaped micelle for small molecular
rigidity, although the radius of gyration is almost steady even during the transition between a cylinder and a disc
for large molecular rigidity. This indicates that a cylindrical micelle formed at small molecular rigidity is more
anisotropic than the one obtained at large molecular rigidity. We also ascertained that a cylindrical micelle and a
disc-shaped micelle coexist dynamically over a certain molecular rigidity range.
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1. Introduction
The spontaneous formation of structures in plasmas

has been intensively studied to improve plasma confine-
ment. Such creation of order, or self-organization, is a
universal characteristic of nonequilibrium and nonlinear
systems interacting with the environment. To explore uni-
versal self-organizing properties in nature, we investigate
self-organization in other systems such as polymeric sys-
tems [1–6] and amphiphilic systems [7–9].

Amphiphilic molecules, such as lipids and surfactants,
contain both a hydrophilic part and a hydrophobic part. In
aqueous solvents, these molecules self-assemble sponta-
neously into various structures such as micelles, bilayer
membranes, and bicontinuous cubic structures [10–12].
Self-assembly of amphiphilic molecules plays an impor-
tant role in several biological and industrial processes.

Several computer simulations have been performed to
examine the effect of molecular rigidity on structure forma-
tion in polymers. Miura et al. studied the effect of rigid-
ity on the crystallization processes of polymer melts by a
molecular dynamics (MD) simulation [13]. Computer sim-
ulations of a single semiflexible homopolymer [14] and
a single flexible-semiflexible block copolymer [15] have
been performed to investigate the folding transition. How-
ever, few simulation studies have been conducted system-
atically to examine the effect of molecular rigidity on mi-
celle formation in an amphiphilic solution.

The purpose of this study is to clarify the molecular
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mechanism of micelle formation in an amphiphilic solu-
tion. Our particular concern is to investigate the effect of
molecular rigidity on micelle formation. To investigate this
in the amphiphilic solution at the molecular level, we per-
form MD simulations of coarse-grained semiflexible am-
phiphilic molecules with explicit solvent molecules and
analyze the micelle formation process.

2. Simulation Model and Method
The computational model is similar to that used in

the previous study [7–9], which is based on the model of
Goetz et al. [16]. An amphiphilic molecule is a semiflex-
ible chain consisting of one hydrophilic particle and three
hydrophobic particles. A solvent molecule is modeled as
a hydrophilic particle. Particles interact via the nonbonded
and bonded potentials.

For nonbonded potentials, the interaction between a
hydrophilic particle and a hydrophobic particle is modeled
by a repulsive soft core potential

USC(r) = 4εSC

(
σSC

r

)9
. (1)

The interaction between a hydrophilic head particle and a
solvent particle is modeled by the Lennard-Jones potential

ULJ−hs(r) = 4εhs

[(
σ

r

)12
−
(
σ

r

)6]
, (2)

and all other interactions are modeled by the Lennard-
Jones potential
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Fig. 1 (a) Snapshot of a cylindrical micelle and (b) an isosur-
face of tail particles formed by amphiphilic molecules at
t∗ = 4800 for k∗3 = 4.0 and (ε∗SC, ε

∗
hs) = (1.0, 2.0). In (a),

gray shadows of the micelle projected on three planes are
also depicted to illustrate its shape. Orange and green par-
ticles denote hydrophilic head particles and hydrophobic
tail particles, respectively. Note that, for clarity, solvent
molecules are not displayed.

ULJ(r) = 4ε
[(
σ

r

)12
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σ
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)6]
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Here, r is the interparticle distance, εSC is an interaction
parameter representing the intensity of the hydrophobic in-
teraction, and εhs represents the intensity of the hydrophilic
interaction. The parameter σSC is set to σSC = 1.05σ, as
in Ref. [16]. To avoid discontinuities in both the potential
energy and the force due to the potential energy cutoff, we
use the shifted force variant of these nonbonded potentials

VX(r) = UX(r) − UX(rc) − ∂UX

∂r

∣∣∣∣∣
r=rc

(r − rc), (4)

where X = SC, LJ-hs, or LJ, and rc is the cutoff distance,
which is set to rc = 3.0σ here.

As bonded potentials, we consider a bond-stretching
potential

U2(di) = k2(di − σ)2, (5)

where k2 is the bond-stretching modulus and di is the bond
length between two neighboring particles along the am-
phiphilic molecule and a bond-bending potential

U3(φi) = k3(1 − cosφi), (6)

where k3 is the bending modulus of the semiflexible am-
phiphiles and φi is the tilt angle between two neighbor-
ing bonds. The parameter k2 is set to k2 = 5000εσ−2, as
in Ref. [16]. The molecular rigidity is controlled by the
bending modulus k3. In the following sections, we repre-
sent dimensionless quantities by an asterisk, e.g., number
density ρ∗ = ρσ3, time t∗ = t

√
ε/mσ2, and temperature

T ∗ = kBT/ε, where kB is the Boltzmann constant.
The equations of motion for all particles are solved

numerically by using the velocity Verlet algorithm at con-
stant temperature with a time step of Δt∗ = 0.0005, and the
temperature is controlled at every 10 time steps by ad hoc
velocity scaling [17]. We apply periodic boundary condi-
tions, and the number density is set to ρ∗ = 0.75.

(a) (b)

Fig. 2 (a) Snapshot of a disc-shaped micelle and (b) an isosur-
face of tail particles formed by amphiphilic molecules at
t∗ = 5000 for k∗3 = 16.0 and (ε∗SC, ε

∗
hs) = (1.0, 2.0). In (a),

gray shadows of the micelle projected on three planes are
also depicted to illustrate its shape. Orange and green par-
ticles denote hydrophilic head particles and hydrophobic
tail particles, respectively. Note that, for clarity, solvent
molecules are not displayed.

First, we prepare an isolated micelle of 120 flexi-
ble amphiphilic molecules with k∗3 = 0.0 in solution at
T ∗ = 1.3 for various values of the interaction parameters
ε∗SC and ε∗hs (1.0 ≤ ε∗SC, ε

∗
hs ≤ 3.0). The number of solvent

molecules is 7520, which yields an amphiphilic concentra-
tion of 0.06. The bending modulus k∗3 is then changed to
various values (k∗3 = 1.0, 2.0, 4.0, 8.0, 16.0) and MD simu-
lations of t∗ = 5.0 × 103 (1.0 × 107 time steps) are carried
out for each simulation run. In this paper, we focus on the
results for ε∗SC = 1.0.

3. Simulation Results and Discussion
3.1 Micellar shape

In Figs. 1 and 2, we show snapshots of micelles
formed by amphiphilic molecules at (ε∗SC, ε

∗
hs) = (1.0, 2.0)

for k∗3 = 4.0 and k∗3 = 16.0, respectively. Gray shadows of
the amphiphilic molecules projected on three planes and
an isosurface of the tail particles, which is calculated by
Gaussian splatting techniques, are depicted in (a) and (b),
respectively, to show the micellar shape clearly. Figures 1
and 2 show that the micellar structure formed at k∗3 = 4.0 is
cylindrical and that at k∗3 = 16.0 is disc-shaped. Our sim-
ulations indicate that the micellar shape changes from a
cylinder to a disc as the intensity of the molecular rigidity,
k∗3, increases.

3.2 Potential energy, radius of gyration, and
micellar shape distribution

In this subsection, we examine the potential energy
E∗pot, the radius of gyration of the micelle R∗g, and the mi-
cellar shape distribution in order to quantitatively investi-
gate how the micellar shape changes with the molecular
rigidity. As in our previous papers [8, 9], we use the ori-
entational order parameters as indices to characterize the
micellar shape. We introduce a coordinate system that uses
the three principal axes of inertia of the micelle. The ori-
gin is located at the center-of-mass position of the micelle,
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Fig. 3 Time evolution of (a) the total potential energy E∗pot, (b)
the radius of gyration R∗g of the micelle, and (c) the frac-
tion of various micellar shapes at k∗3 = 4.0 and (ε∗SC, ε

∗
hs) =

(1.0, 2.0).

the x-axis is the principal axis with the largest moment of
inertia, and the z-axis is the principal axis with the smallest
moment of inertia. The orientational order parameters px,
py, and pz are defined by

pi =

〈
3 cos2 θi − 1

2

〉
(i = x, y, z), (7)

where θi is the angle between the end-to-end vector of
an amphiphilic molecule and the i-axis (i = x, y, z),
and 〈· · · 〉 denotes the average over of all amphiphilic
molecules. Note that the average is taken for the am-
phiphilic molecules in the vicinity of the center-of-mass
position of the micelle, that is, those in the region −Δr <
x, y, z < Δr. We set Δr = 2.5σ in the calculation
of pi. Ideally, the orientational order parameters take
the following values: (px, py, pz) = (1,−0.5,−0.5) for
a disc: (px, py, pz) = (0, 0,−0.5) for a cylinder: and
(px, py, pz) = (0, 0,0) for a sphere. Detailed analysis of
the distribution functions of these orientational order pa-
rameters showed that, in practice, three types of micellar
shapes are clearly distinguishable by the orientational or-
der parameters: 0.5 < px < 1.0 and −0.5 < py, pz <

−0.25 for a disc-shaped micelle: −0.25 < px, py < 0.5
and −0.5 < pz < −0.25 for a cylindrical micelle: and
−0.25 < px, py, pz < 0.5 for a spherical micelle [8, 9]. We

Fig. 4 Time evolution of (a) the total potential energy E∗pot, (b)
the radius of gyration R∗g of the micelle, and (c) the
fraction of various micellar shapes at k∗3 = 16.0 and
(ε∗SC, ε

∗
hs) = (1.0, 2.0).

calculate the fractions of the micellar shapes on the basis
of these orientational order parameters.

Figures 3 and 4 show the time dependence of the total
potential energy E∗pot, the radius of gyration of the micelle
R∗g, and the fraction of various micellar shapes at k∗3 = 4.0
and k∗3 = 16.0, respectively. The following characteristic
features are identified. (1) The dominant micellar shape at
k∗3 = 4.0 is a cylinder (Fig. 3 (c)), and that at k∗3 = 16.0 is a
disc (Fig. 4 (c)), and the micellar shape alternates between
a cylinder and a disc several times, e.g., at t∗ ≈ 3300 and
4300 in Fig. 3 (c) and at t∗ ≈ 4800 in Fig. 4 (c). Such an
alternating behavior can be a precursor to the dynamic co-
existence discussed below (section 3.3). (2) The potential
energy remains almost constant even during the transition
between a cylinder and a disc (Figs. 3 (a) and 4 (a)). (3)
The radius of gyration of the cylindrical micelle becomes
larger than that of the disc-shaped micelle at k∗3 = 4.0
(Fig. 3 (b)), whereas the radius of gyration is almost steady
even during the transition between a cylinder and a disc at
k∗3 = 16.0 (Fig. 4 (b)). This indicates that the cylindrical
micelle formed at k∗3 = 4.0 is more anisotropic than that
obtained at k∗3 = 16.0.

3.3 Dynamic coexistence of micellar shapes
Here, we study the dynamic coexistence of a cylindri-
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Fig. 5 Time evolution of (a) the total potential energy E∗pot, (b)
the radius of gyration R∗g of the micelle, and (c) the
fraction of various micellar shapes at k∗3 = 16.0 and
(ε∗SC, ε

∗
hs) = (1.0, 2.5).

cal micelle and a disc-shaped micelle observed at k∗3 = 16.0
and (ε∗SC, ε

∗
hs) = (1.0, 2.5). In Fig. 5, we show the time de-

pendence of the total potential energy E∗pot, the radius of
gyration of the micelle R∗g, and the fraction of various mi-
cellar shapes. Figure 5 (c) indicates that the dominant mi-
cellar shape alternates between a cylinder and a disc. Both
the potential energy and the radius of gyration for the cylin-
drical micelle become larger than those for the disc-shaped
micelle, which means that the disc-shaped micelle is more
stable and isotropic than the cylindrical micelle.

4. Conclusion
We have obtained the following new results by per-

forming MD simulations of coarse-grained semiflexible
amphiphilic molecules with explicit solvent molecules. (1)
As the intensity of the molecular rigidity k∗3 increases, the
micellar shape changes from a cylinder to a disc. (2) The
radius of gyration of a cylindrical micelle is larger than that
of a disc-shaped micelle for small k∗3, whereas the radius of
gyration becomes almost constant even during the transi-
tion between a cylinder and a disc for large k∗3. (3) The
dynamic coexistence of a cylindrical micelle and a disc-

shaped micelle is observed over a certain molecular rigid-
ity range. Both the potential energy and radius of gyration
of the cylindrical micelle become larger than those of the
disc-shaped micelle.

The second result indicates that the cylindrical micelle
formed at small k∗3 is more anisotropic than that obtained
at large k∗3. The third observation suggests that the disc-
shaped micelle is more stable and isotropic than the cylin-
drical micelle.

Dynamic coexistence is observed not only in am-
phiphilic systems but also in polymeric systems. In poly-
meric systems, dynamic coexistence of the orientationally
ordered state and the randomly oriented state is observed
at a certain temperature [5].

As our future work, we will study the molecular
mobility and micellar shape change in semiflexible am-
phiphilic solutions.
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