[Table of Contents]

Plasma and Fusion Research

Volume 5, S2081 (2010)

Regular Articles


Full Wave Simulation of Lower Hybrid Waves in ITER Plasmas Based on the Finite Element Method
Orso MENEGHINI and Syun'ichi SHIRAIWA
Massachusetts Institute of Technology - Plasma Science and Fusion Center 77 Massachusetts Avenue, Cambridge 02138, Massachusetts, USA
(Received 7 December 2009 / Accepted 31 March 2010 / Published 10 December 2010)

Abstract

The first lower hybrid (LH) full wave simulation of an ITER-scale plasma is presented. LHEAF [O. Meneghini et al., Phys. Plasmas 16, (2009)], an efficient LH full wave solver based on Finite Element Method (FEM) was used. In this study the scalability of the LHEAF approach was investigated, and the possibility of using massive parallel computer for solving extremely large problems was shown. In reactor scale plasmas, LH waves having a typical n|| ≈ 2 are expected to be absorbed in the periphery of the plasma. In order to exploit the spatial localization of the LH waves, LHEAF is modified to consider only the region of plasma where the wave fields are non-zero. By this approach, the size of the computational domain was reduced by more than a factor of 10. In this simulation, the magnetic equilibrium and the density and temperature profiles proposed for AT operation scenario on ITER are used. In addition, the wide SOL is supposed to play an important role in the propagation of the LH waves on ITER, and its presence was included in the simulation. For a Maxwellian plasma the power deposition profile is narrow and peaks at r/a ≈ 0.7.


Keywords

LHEAF, COMSOL, ITER, LH, lower hybrid

DOI: 10.1585/pfr.5.S2081


References

  • [1] D. W. Ignat, Phys. Fluids 24, 1110 (1981).
  • [2] P. T. Bonoli and E. Ott, Phys. Fluids 25, 359 (1982).
  • [3] Y. Peysson, R. Arslanbekov, V. Basiuk, J. Carrasco, X. Litaudon, D. Moreau and J. P. Bizarro, Phys. Plasmas 3, 3668 (1996).
  • [4] P. T. Bonoli and R. C. Englade, Phys. Fluids 29, 2937 (1986).
  • [5] J. C. Wright, P. T. Bonoli, A. E. Schmidt, C. K. Phillips, E. J. Valeo, R. W. Harvey and M. A. Brambilla, Phys. Plasmas 16, 072502 (2009).
  • [6] E. F. Jaeger, L. A. Berry, E. D'Azevedo, D. B. Batchelor and M. D. Carter, Phys. Plasmas 8, 1573 (2001).
  • [7] S. Shiraiwa, O. Meneghini, R. Parker, P. Bonoli, M. Garret, M. C. Kaufman, J. C. Wright and S. Wukitch, Phys. Plasmas 17, 056119 (2010).
  • [8] M. Brambilla, Technical Report IPP 5/66 (Max-PlanckInstitute fur plasmaphysik, 1996).
  • [9] S. Shiraiwa, O. Meneghini, R. Parker, G. Wallace and J. Wilson, In 18th Topical conference on radio frequency power in plasmas (2009).
  • [10] J. C. Wright, P. T. Bonoli, A. E. Schmidt, C. K. Phillips, E. J. Valeo, R. W. Harvey and M. Brambilla, Phys. Plasmas 16, 072502 (2009).
  • [11] S. Shiraiwa et al. AIP Conf. Proc. 1187, 363 (2009).
  • [12] T. A. Davis, ACM Transactions on Mathematical Software (TOMS) 30, 199 (2004).
  • [13] O. Schen and K. K. Gaartner, J. Fut. Gen. Comput. Syst. 20, 475 (2004).
  • [14] P. R. Amestoy, I. S. Duff and J.-Y. LâExcellent, Comp. Meth. Appl. Mech. Eng. 184, 501 (2000).
  • [15] P. Amestoy, T. Davis and I. Duff, ACM Transactions on Mathematical Software (TOMS) 30, 381 (2004).
  • [16] E. F. Jaeger, L. A. Berry, E. D'Azevedo, D. B. Batchelor and M. D. Carter, Phys. Plasmas 8, 1571 (2001).
  • [17] F. Leuterer, Plasma Phys. Control. Fusion 33, 169 (1991).
  • [18] A. Ekedahl, G. Granucci, J. Mailloux, Y. Baranov, S. K. Erents, E. Joffrin, X. Litaudon, A. Loarte, P. J. Lomas, D. C. McDonald et al., Nucl. Fusion 45, 351 (2005).
  • [19] ITER technical basis document, doc. no. GAO FDR 1 0007-13 r1.0 Section 4.3.3, IAEA, Vienna, 2001.
  • [20] G. T. Hoang, A. Bécoulet, J. Jacquinot, J. F. Artaud, Y. S. Bae, B. Beaumont, JH Belo, G. Berger-By, J. P. S. Bizarro, P. Bonoli et al., Nucl. Fusion 49, 075001 (2009).

This paper may be cited as follows:

Orso MENEGHINI and Syun'ichi SHIRAIWA, Plasma Fusion Res. 5, S2081 (2010).