[Table of Contents]

Plasma and Fusion Research

Volume 5, S2013 (2010)

Regular Articles

Blobs on the High Field Side of Tokamaks
José VICENTE, Serguei I. LASHKUL1), Michael TENDLER2), Serguei V. SHATALIN3), Elena VEKSHINA3), Anton V. SIDOROV3) and Lev A. ESIPOV1)
Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear - Laboratório Associado, Instituto Superior Técnico, 1049-001, Lisbon, Portugal
Ioffe Physico-Technical Institute, 194021, St. Petersburg, Russia
Alfvén Laboratory, KTH, Stockholm, SE-100 44, Sweden
St. Petersburg State Polytekhnical Institute, 195251, St. Petersburg, Russia
(Received 5 December 2009 / Accepted 10 March 2010 / Published 10 December 2010)


Turbulence-induced high density filaments, blobs, might represent the new paradigm for radial convective transport in the Scrape-Off-Layer of magnetic fusion devices. Models for individual blob dynamics, considering their generation on the Low Field Side (LFS) of the torus have been put forward. We investigate the existence of blobs in the peripheral region of the High Field Side (HFS) of the FT-2 tokamak. Langmuir probe measurements are used to detect and characterize blobs. The results were obtained in plasmas with enhanced Lower Hybrid Heating and data was acquired with a new fast data acquisition system with 50 MHz sampling rate. While the majority of the blobs are observed to move towards the wall as expected, some are observed to move inwards towards the core. This effect is not understood in the light of existing models for the LFS where only the outward direction is expected. Further characterization of plasma blobs should therefore involve both HFS and LFS. This could be done at ASDEX Upgrade where reflectometry systems are capable of measuring simultaneously the density turbulence on both HFS and LFS. The dependence between radial velocity, size and density of the blobs is also investigated.


fusion, plasma turbulence, plasma transport, plasma blob, Langmuir probe

DOI: 10.1585/pfr.5.S2013


  • [1] G. D. Conway, Plasma Phys. Control. Fusion 50, 124026 (2008).
  • [2] R. B. White, The Theory of Toroidally Confined Plasmas (Imperial College Press, London, 2006) p.313.
  • [3] M. Endler et al, 20th EPS Conference on Contr. Fusion and Plasma Phys. Lisbon 17C, part II, 583 (1993).
  • [4] M. Endler et al, Physica Scripta 51, 610 (1995).
  • [5] A. Kirk et al, Phys. Rev. Lett. 96, 185001 (2006).
  • [6] M. V. Umansky, S. I. Krasheninnikov, B. LaBombard and J. L. Terry, Phys. Plasmas 5, 3373 (1998).
  • [7] L. A. Esipov et al, Zh. Tekh. Fiz. 67, N4, 48 (1997).
  • [8] S. I. Krasheninnikov, Czechoslovak J. of Phys. 48, Suppl. S2 (1998).
  • [9] S. I. Krasheninnikov, Phys. Lett. A 283, 368 (2001).
  • [10] D. A. D'Ippolito, J. R. Myra and S. I. Krasheninnikov, Phys. Plasmas 9, 222 (2002).
  • [11] S. I. Krasheninnikov, D. A. D'Ippolito and J. R. Myra, J. Plasma Phys. 74, 679 (2008).
  • [12] J. R. Myra and D. A. D'Ippolito, Phys. Plasmas 12, 092511 (2005).
  • [13] O. E. Garcia, Plasma Fusion Res. 4, 019 (2009).
  • [14] S. I. Lashkul et al, 30th EPS Conference on Contr. Fusion and Plasma Phys. St. Petersburg V1, 422 (2003).
  • [15] S. I. Lashkul et al., 33rd EPS Conference on Plasma Phys. Rome 30I, P4-099 (2006).
  • [16] A. N. Levitskii, I. E. Sakharov and S. V. Shatalin, Prib. Tekh. Éksp. 5, 153 (1992).
  • [17] S. V. Shatalin et al, Plasma Phys. Reports 33, N3, 169 (2007).
  • [18] G. S. Kirnev, V. P. Budaev et al, Nucl. Fusion 45, 459 (2005).
  • [19] A. Schmid, A. Herrmann, H. W. Müller and the ASDEX Upgrade Team, Plasma Phys. Control. Fusion 50, 045007 (2008).

This paper may be cited as follows:

José VICENTE, Serguei I. LASHKUL, Michael TENDLER, Serguei V. SHATALIN, Elena VEKSHINA, Anton V. SIDOROV and Lev A. ESIPOV, Plasma Fusion Res. 5, S2013 (2010).