[Table of Contents]

Plasma and Fusion Research

Volume 5, 026 (2010)

Regular Articles


Kinetic Particle Simulation Study of Parallel Heat Transport in Scrape-off Layer Plasmas over a Wide Range of Collisionalities
Aaron FROESE, Tomonori TAKIZUKA1) and Masatoshi YAGI2)
IGSES, Kyushu University, Kasuga 816-8580, Japan
1)
Japan Atomic Energy Agency, Naka 311-0193, Japan
2)
RIAM, Kyushu University, Kasuga 816-8580, Japan
(Received 15 March 2010 / Accepted 10 June 2010 / Published 2 August 2010)

Abstract

Fluid models are not generally applicable to fusion edge plasmas without external provision of kinetic factors: closure parameters and boundary conditions inside the sheath region. We explain the PARASOL-1D simulation, a particle-in-cell code with a binary collision Monte-Carlo model, and use it to determine four kinetic factors commonly needed in fluid codes. These are the electron and ion heat flux limiting factors, αe and αi, the ion adiabatic index, γA, and the electron and ion temperature anisotropy, T/T. We survey these factors over a wide range of collisionalities and find that, as predicted, the conductive heat flux is accurately described by the Spitzer-Härm expression in the collisional limit and asymptotes to a constant value in the collisionless limit. However, unique behavior occurs in the weakly collisional regime when the ratio of the mean free path to connection length is 0.1 < λmfp/L< 10, when the SOL is between the conduction- and sheath-limited regimes. We find that αe can peak, becoming larger than the collisionless limit, γA is less than unity, and only the ions are anisotropic. The effects of electron energy radiation and Langevin heating are explored. Finally, the strong deviations of the energy distribution function from Maxwellian in the weakly collisional and collisionless regimes are explained.


Keywords

scrape-off layer, particle-in-cell simulation, heat flux limiting factor, adiabatic index

DOI: 10.1585/pfr.5.026


References

  • [1] A. Loarte et al., Nucl. Fusion 47, S203 (2007).
  • [2] R. Goldston, Phys. Plasmas 17, 012503 (2010).
  • [3] L. Tonks and I. Langmuir, Phys. Rev. 34, 876 (1929).
  • [4] S.A. Self and H.N. Ewald, Phys. Fluids 9, 2486 (1966).
  • [5] G.A. Emmert et al., Phys. Fluids 23, 803 (1980).
  • [6] R.C. Bissell and P.C. Johnson, Phys. Fluids 30, 779 (1987).
  • [7] R.C. Bissell, P.C. Johnson and P.C. Stangeby, Phys. Fluids B: Plasma Physics 1, 1133 (1989).
  • [8] J.T. Scheuer and G.A. Emmert, Phys. Fluids 31, 1748 (1988).
  • [9] M. Keilhacker et al., Nucl. Fusion 31, 535 (1991).
  • [10] T. Takizuka et al., J. Nucl. Mater. 128, 104 (1984).
  • [11] B. Braams, NET report 68, EUR-FU-XII-80/87/68 (1987).
  • [12] T.D. Rognlien et al., J. Nucl. Mater. 196-198, 347 (1992).
  • [13] R. Simonini et al., J. Nucl. Mater. 196-198, 369 (1992).
  • [14] H. Kawashima et al., Plasma Fusion Res. 1, 031 (2006).
  • [15] T. Takizuka, M. Hosokawa and K. Shimizu, J. Nucl. Mater. 313-316, 1331 (2003).
  • [16] E. Pohn and M. Shoucri, Comm. Nonlinear Sci. 13, 183 (2008).
  • [17] W.M. Stacey, Fusion Plasma Physics (Wiley-VCH, Weinheim, 2005).
  • [18] A. Froese, T. Takizuka and M. Yagi, Contrib. Plasma Phys. 50, 285 (2010).
  • [19] D. Tskhakaya et al., J. Nucl. Mater. 390-391, 335 (2009).
  • [20] A. Hassanein, I. Konkashbaev and L. Nikandrov, J. Nucl. Mater. 290-293, 1079 (2001).
  • [21] A. Ferreira et al., Plasma Phys. Control. Fusion 46, 669 (2004).
  • [22] P.C. Stangeby, Plasma Boundary of Magnetic Fusion Devices (Taylor & Francis, New York, 2000).
  • [23] S.I. Braginskii, Transport Processes in a Plasma volume 1 (Consultant Bureau, New York, 1965).
  • [24] W. Fundamenski, Plasma Phys. Control. Fusion 47, R163 (2005).
  • [25] L. Spitzer and R. Härm, Phys. Rev. 89, 977 (1953).
  • [26] T. Takizuka, M. Hosokawa and K. Shimizu, Trans. Fusion Technol. 39, 111 (2001).
  • [27] A. Froese, T. Takizuka and M. Yagi, Plasma Fusion Res. 5, S1017 (2010).
  • [28] E. Zawaideh and N.S. Kim, Phys. Fluids 31, 3280 (1988).
  • [29] R. Schneider et al., Contrib. Plasma Phys. 46, 27 (2006).
  • [30] D. Tskhakaya et al., Contrib. Plasma Phys. 48, 89 (2008).
  • [31] M. Day et al., Contrib. Plasma Phys. 36, 419 (1996).
  • [32] J. Marki et al., J. Nucl. Mater. 363-365, 382 (2007).
  • [33] X. Garbet et al., Nucl. Fusion 50, 043002 (2010).
  • [34] D. Tskhakaya et al., Contrib. Plasma Phys. 48, 121 (2008).
  • [35] C.K. Birdsall and A.B. Langdon, Plasma Physics via Computer Simulation (Taylor & Francis, London, 2005).
  • [36] R.W. Hockney and J.W. Eastwood, Computer Simulation Using Particles (McGraw-Hill, New York, 1988).
  • [37] J.P. Verboncoeur, Plasma Phys. Control. Fusion 47, A231 (2005).
  • [38] T. Takizuka and H. Abe, J. Comput. Phys. 25, 205 (1977).

This paper may be cited as follows:

Aaron FROESE, Tomonori TAKIZUKA and Masatoshi YAGI, Plasma Fusion Res. 5, 026 (2010).