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Fluid models are not generally applicable to fusion edge plasmas without external provision of kinetic fac-
tors: closure parameters and boundary conditions inside the sheath region. We explain the PARASOL-1D sim-
ulation, a particle-in-cell code with a binary collision Monte-Carlo model, and use it to determine four kinetic
factors commonly needed in fluid codes. These are the electron and ion heat flux limiting factors, αe and αi,
the ion adiabatic index, γA, and the electron and ion temperature anisotropy, T||/T⊥. We survey these factors
over a wide range of collisionalities and find that, as predicted, the conductive heat flux is accurately described
by the Spitzer-Härm expression in the collisional limit and asymptotes to a constant value in the collisionless
limit. However, unique behavior occurs in the weakly collisional regime when the ratio of the mean free path to
connection length is 0.1 < λmfp/L|| < 10, when the SOL is between the conduction- and sheath-limited regimes.
We find that αe can peak, becoming larger than the collisionless limit, γA is less than unity, and only the ions are
anisotropic. The effects of electron energy radiation and Langevin heating are explored. Finally, the strong de-
viations of the energy distribution function from Maxwellian in the weakly collisional and collisionless regimes
are explained.
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1. Introduction
In a tokamak, hot plasma is lost from the core by

anomalous transport and edge localized modes (ELMs)
and carried by parallel transport along the open field lines
in the scrape-off layer (SOL) to the divertor plates. Parallel
heat flux through the SOL in current generation tokamaks
can be higher than 500 MWm−2 and ITER is expected to
have double that amount [1]. To limit sputtering, which
damages the divertor plates and causes impurities to enter
the plasma, steady-state heat flux on the plate surface must
remain less than 10 MWm−2. Strategies presently used to
reduce the heat load include inclining the divertor tiles, in-
creasing magnetic flux expansion at the divertor, and in-
creasing perpendicular transport in the SOL. The divertor
geometry is also optimized to produce a detached diver-
tor. The most appealing solution is to engineer the SOL
behavior itself to increase the parallel temperature gradi-
ent. However, the empirical scaling of the heat flux to the
divertor plates with respect to SOL properties has not yet
been measured [2].

The SOL and plasma-surface interaction are highly
complex features that must be modeled accurately in or-
der to simulate realistic fusion devices. Since the SOL is a
mediator between the hot core plasma and solid surfaces,
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the properties of the SOL plasma vary significantly along
the magnetic field. Many 1d models have been developed
to provide information about the density, temperature, flow
velocity, and electric field along the magnetic field lines,
which can be used to determine the energy out-fluxes to
the divertor plate versus those to volumetric loss processes
such as radiation.

In the collisionless regime, the plasma is isothermal,
so the temperature can be specified as a parameter and the
sheath can be ignored. Most early models use this tech-
nique and produce similar results. Tonks and Langmuir
developed a kinetic model with cold ions in the 1920s to
apply to low temperature, non-magnetic gas discharges in
the collisionless and collisional limits [3]. More specific to
the SOL, an isothermal fluid model with warm ions by Self
and Ewald was presented in the 1960s [4]. Collisionless ki-
netic treatments have been developed by Emmert et al.[5]
and Bissell and Johnson [6]. Additionally, two adiabatic,
collisionless fluid models have been created by Bissell et
al.[7] and Scheuer and Emmert [8]. The latter was also ap-
plied to a simple case in the collisional limit.

In the collisional SOL, one must specify the parti-
cle, momentum, and power inputs, as well as the nature
of sources and sinks. This added complication essentially
precludes the use of analytic models and many computer
codes have been developed to solve this problem. Such
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codes include the fluid code EDGE1D [9] and the particle
code PARASOL-1D [10]. The results of these 1d models
can be thought of as providing profiles which are averaged
over the width of the SOL. The cross-field transport and
width of the SOL are not known, but must be taken from
experiment and added as parameters.

Modern modeling efforts concentrate on 2d computer
codes, which can self-consistently evaluate the cross-field
particle and energy diffusion, as well as predict the ra-
dial profile of the SOL. A majority, such as B2 [11],
UEDGE [12], EDGE2D [13], and SOLDOR [14] are fluid
codes, which reduce the dimensionality by assuming a
Maxwellian velocity distribution. However, the fluid
model is not self-consistent; it requires closure parame-
ters and boundary conditions inside the sheath region to
be given by external models. These adjustments to the
fluid model that reproduce kinetic effects must be supplied
by analytic theory, experiment, or kinetic simulations, and
hence are called kinetic factors (KF). Ideally, KF for 2d
fluid codes should come from 2d experimental data or 2d
kinetic simulations, both rare occurrences. Because of the
large amount of computing power required to sample five
dimensions, 2d3v fully kinetic codes are infrequently used.
We are aware of only one particle-in-cell code, PARASOL-
2D [15], and one Euler-Vlasov code [16] in existence. Gy-
rokinetic codes are more common and may produce ade-
quate data for KF.

Since fluid codes are preferentially used in the treat-
ment of edge plasmas, it is important that they implement
kinetic effects with accurate models. In this work, we ex-
amine four KF: the electron and ion heat flux limiting fac-
tors, αe and αi, the ion adiabatic index, γA, and the elec-
tron and ion temperature anisotropy, T||/T⊥, in a region
of the SOL without sources or sinks. The heat flux lim-
iting factors are used to accurately model the heat flux in
the collisionless plasma. Rather than the ion fluid veloc-
ity, most experiments report the Mach number in the SOL.
Therefore, the adiabatic index is necessary to determine
the ion sound speed from the local temperature. Finally,
fluid codes do not currently separate the temperatures par-
allel and perpendicular to the magnetic field, which typi-
cally differ by a factor of three [28]. Therefore, the tem-
perature anisotropy must be known to adjust the calculated
heat flux. We investigate the equilibrium response of these
four KF to a range of collisionalities, recycling rates, and
source models.

In the next section, fluid models and kinetic effect
models that can be applied to them are briefly reviewed.
Kinetic models, specifically that of the PARASOL-
1D simulation, are explained in Sec. 3. Results from
PARASOL-1D are presented and discussed in Sec. 4. Fi-
nally, the findings are summarized in Sec. 5.

2. Kinetic Effects in Fluid Models
2.1 Fluid model and closure

If we assume that the Coulomb collision mean free
path (MFP) is much shorter than the connection length,
λmfp � L||, then the plasma velocity distribution can be
assumed to be Maxwellian so that only the macroscopic
quantities of the plasma must be known. The fluid model,
which relates the macroscopic properties to one another, is
developed by taking the first few moments of the Boltz-
mann equation. This process is explained in all introduc-
tory plasma texts, e.g. [17], but we shall reproduce the
equations here. Each plasma species is represented by the
Boltzmann equation,

∂ fσ
∂t
+u ·∇r fσ+

qσ
mσ

(E+u×B) ·∇v fσ = Cσ+Sσ (1)

where fσ(r, u) is the phase-space distribution of species
σ ∈ {e, i}, u, qσ and mσ are the particle velocity, charge,
and mass, E and B are the electric and magnetic fields,
Cσ =

∑
j Cσ j is the collision term between species σ and

all other species j, and S σ is the source term. If the col-
lision and source terms are zero, the characteristics of the
equation are

mσ
dr
dt
= u, mσ

du
dt
= qσ(E + u × B), (2)

where r is the spatial position of an individual particle.
Each moment equation is obtained by multiplying Eq. 1 by
a kernel function zn(u) and integrating over velocity space.
The zeroth moment is found by multiplying by z0 = 1 and
integrating, giving the equation of continuity,

∂nσ
∂t
+ ∇ · (nσVσ) = S0

σ, (3)

where nσ is the species density, Vσ = 〈u〉σ is the fluid ve-
locity with the brackets 〈a〉σ≡

∫
a fσ(x, u)d3v/

∫
fσ(x, u)d3v

indicating an average of the property a over all velocity
space, and Sn ≡ ∫

Szn(u)d3v is the nth moment of the
source term. Since there are two unknowns, another equa-
tion is necessary. The first moment is found by multiply-
ing by z1 = mσu and integrating, giving the momentum
balance equation,

mσ
∂nσVσ

∂t
− nσqσ[E + Vσ × B] (4)

+∇ · Mσ = R1
σ + S1

σ,

where Mσ = nσmσ(VσVσ) is the momentum stress tensor,
and Rn

σ ≡
∫

Czn(u)d3v is the nth moment of the collisional
friction. Since there are now three unknowns, yet another
equation is necessary. The second moment is found by
multiplying by z2 = (1/2)mσv

2 and integrating, giving the
energy balance equation,

1
2
∂

∂t
(TrMσ) +∇ ·Qσ − nσqσVσ · E = R2

σ + S2
σ, (5)

where Qσ ≡ (1/2)nσmσ

〈
v2u

〉
σ

is the energy flux. Each
moment equation has one additional unknown that must be
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determined from the next higher moment. The sequence is
usually truncated here at the second or sometimes taken to
the third moment. An external model is used to provide a
value for the last unknown. For example, adiabatic fluid
models assume that the heat flow is zero.

2.2 Kinetic factors
The fluid model reduces computation time, but elim-

inates details in velocity space, making it inaccurate
when the energy distribution function (EDF) deviates from
Maxwellian. Such deviation can occur when the MFP is
long or there is an electric field, such as in the sheath re-
gion. Fluid codes are used when high spatial dimension-
ality is needed, but information regarding cross-field dif-
fusion is more important than accurate modeling in the
weakly collisional and collisionless regimes. Modern SOL
fluid codes apply external models that attempt to correct
for the loss of kinetic effects. These models are typically
simple, relying on a single fitting parameter, which be-
comes a KF of interest. Kinetic factors include closure pa-
rameters that act volumetrically and boundary conditions
at the sheath entrance, rather than the divertor plate.

The need for kinetic factors is nearly always due to a
deviation of the plasma from a Maxwellian distribution.
The parallel EDFs in the SOL are strongly affected by
the collisionality. If the plasma is collisional, then there
is strong diffusion in velocity space and the distribution
is very close to Maxwellian. However, if the plasma is
weakly collisional, simulations have shown that the elec-
tron distribution in the SOL has a low-energy symmet-
rical bulk population and a high-energy tail traveling to-
wards the divertor plate [18, 19]. Because the bulk is al-
most symmetric, it will contribute very little to the fluid
velocity or heat flux; most of the contribution will come
from the high-energy tail. However, the tail properties
cannot be determined from macroscopic quantities like the
plasma density and temperature because the tail has a den-
sity much less than 1% of the bulk. Using an Eulerian
code with Fokker-Planck collision operator, the bulk popu-
lation was shown to have a double-lobed shape [20], which
has not been reproduced with either PARASOL-1D [18] or
BIT1 [19]. However, experimental results cannot resolve
this conflict because they are not sensitive enough to dif-
ferentiate the tail [21].

Regardless of collisionality, the plasma always devi-
ates from Maxwellian in the Debye sheath, due to the
strong electric field. The high-energy electrons are lost,
while low-energy ones are reflected, creating a cut-off
Maxwellian distribution. On the other hand, the ions are
accelerated towards the divertor plate, causing a shifted-
Maxwellian distribution [22]. Therefore, fluid models can-
not model the sheath region self-consistently; the sheath
region is ignored and all boundary conditions must be pro-
vided at the sheath entrance by an external model.

2.3 Closure parameters
The volumetric KF are the conductive heat flux, tem-

perature anisotropy, and ion viscosity. Each of these can
be calculated using the classical expression in the colli-
sional limit [23], but require a functional dependence on
collisionality to be useful in a fluid code. The ion and elec-
tron parallel energy fluxes can be divided into conductive
heat flux, convective flux, viscous transport of energy, and
convection of energy. The latter two are higher order com-
ponents, so they can be neglected, leaving the definitions

Qσ =
nσmσ

2

〈
v||v2

〉
σ
≈ qcond

σ + qconv
σ , (6)

qcond
σ =

nσmσ

2

〈
ṽ||ṽ2

〉
σ
, (7)

where ũ = u − Vσ is the random velocity of each particle.
The convective and conductive components of the electron
heat flux are roughly equal, but the ion heat flux is expected
to be almost completely convective [24]. The conductive
heat flux is approximated by the Spitzer-Härm expression
[23, 25] in a collisional plasma,

qSH
σ = −κSH

σ ∇||Tσ, (8)

κSH
i = 3.9nivtiλii,

κSH
e = 3.2nevteλee,

where κSH
σ is the heat conductivity, Tσ = me

〈
v2

〉
/3 is the

temperature, vtσ = (Tσ/mσ)1/2 is the thermal speed, λσσ =
vtστσσ is the thermal MFP, and τσσ ∝ v3

tσ is the same-
species collision time. This expression is valid when the
actual heat flux is the less than the order of the Maxwellian
one-way free-streaming heat flux

qFS
σ = nσTσ

(
T||,σ/mσ

)1/2 , (9)

where T||,σ = me

〈
v2
||
〉

is the temperature parallel to the mag-
netic field. The collision-dependent heat flux is approxi-
mated by a harmonic average of Eqs. 8 and 9 [22],

qeff
σ =

(
1

qSH
σ

+
1

ασqFS
σ

)−1

, (10)

where ασ ≡ limλmfp→∞ qcond
σ /qFS

σ is the flux-limiting coef-
ficient, calculated as the ratio between the actual and one-
way free-streaming heat flux in the collisionless limit.

In addition to heat flux limiting factors, the total heat
flux is also affected by temperature anisotropy in the col-
lisionless limit. Parallel energy is transported much faster
than perpendicular energy, which causes the parallel tem-
perature to decrease faster than the perpendicular energy.
Fluid models assume a collisional plasma, which would
eliminate any anisotropy, so the temperature anisotropy
should be supplied to accurately calculate the heat flux.

Coulomb collisions act to transfer momentum when
the colliding particles have similar mass. Ion-ion collisions
give rise to ion viscosity and electron-electron collisions to
electron viscosity. Since viscosity is diffusion of momen-
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tum, the electron viscosity is smaller than the ion viscosity
by a factor of the square root of the mass ratio, so it can
be ignored. Similar to the heat flux, the parallel ion viscos-
ity is often calculated as a limited harmonic average of the
Braginskii ion viscosity,

π||,i =
⎛⎜⎜⎜⎜⎜⎝ 1

πBr
||,i
+

1
bniT||,i

⎞⎟⎟⎟⎟⎟⎠
−1

, (11)

where

πBr
||,i = −(4/3)η||,i∇||V||, (12)

η||,i = 0.96niTiτi

is the Braginskii viscosity and b is the ion viscosity limit-
ing factor.

The heat flux limiting factors are usually assumed to
be ασ ≈ 0.1, although previous kinetic simulations have
given values in the range αi = 0.1 ∼ 2 and αe = 0.03 ∼
3 [24]. We have studied the heat transport in SOL plas-
mas with the PARASOL-1D code and shown that in a
collisionless plasma where the ion-electron mass ratio is
mi/me = 400 and the plasma is in equilibrium, the elec-
tron heat flux limiting factor is αe = 0.75 [26]. Further
exploration showed that for a more realistic mass ratio of
mi/me = 1800, the value of αe in a region of the SOL with
no source or sink varies smoothly from a very small value
when the electron radiation energy-loss rate is low to ap-
proximately unity when it is high [27].

The heat flux in the collisional and collisionless lim-
its has been fully described by analytic theories [23, 25].
There has even been an attempt to explain the plasma be-
haviour in the weakly collisional regime [28]. However,
even this approach must assume a Maxwellian distribu-
tion when providing fourth-order closure terms. Examina-
tion of the effect of collisionality using PARASOL-1D has
shown that the heat flux does not follow a harmonic aver-
age transition from the collisional to the collisionless state,
but peaks in the weakly collisional regime when the MFP
is of the order of the system length and then decreases to
the collisionless limit. The reason for the peak was found
to be the development of a high-energy tail in the elec-
tron energy distribution as the plasma becomes collision-
less [18, 19]. The tail effect is overpowered when elec-
tron radiation creates an asymmetry between the incoming
and outgoing electron bulk distributions, thereby raising
the heat flux in the collisionless limit and eliminating the
peak.

While the harmonic average approximation is widely
used (e.g. in B2-Eirene [29]), it has been found to be not
generally valid [19, 30, 31, 34]. In kinetic particle-in-cell
(PIC) simulations, the heat flux limiting factors and vis-
cosity limiting factors vary by many orders of magnitude
along the field line. The poloidal averages vary by an or-
der of magnitude with collisionality [30] and also have a
strong dependence on inelastic processes, such as recy-
cling and radiation [19]. Using a fluid code, plasma pro-

files are found to be extremely sensitive to small changes
in αe [31], showing limiting factors to be poorly adapted
for such application.

2.4 Boundary conditions
Boundary conditions must be provided at the sheath

entrance, but the sheath is often highly dependent on prop-
erties integrated along the entire SOL. Therefore, we ex-
pect an accurate external model to be fairly complex. Sim-
ply measuring the properties at the sheath entrance is suf-
ficiently difficult because the potential and electric field
vary smoothly throughout the Debye sheath and magnetic
presheath. The sheath entrance is not a clearly defined
point, so we can define it using a number of conditions.
For example:

1. A fixed point a specified number of Larmor radii from
the wall is a good first-order estimate of the sheath
entrance.

2. The point where the ion and electron charge densities
become equal, ne = Zini, defines the sheath edge ac-
cording to the quasineutral condition. The parameter
Zi is the charge per ion, which is one for a hydrogenic
plasma.

3. The point where the ion and electron fluxes become
equal, neV||e = ZiniV||i, defines the sheath edge ac-
cording to the ambipolar current condition.

4. The last point in front of the divertor where (under the
driftless approximation) ions travel parallel to the
magnetic field, Vxi = V||i sinΘ, defines the sheath
edge according to the magnetized ion condition. The
angle Θ = Bx/B is the ratio of the poloidal magnetic
field to the total field strength and Vx is the flow ve-
locity projected in the poloidal direction.

5. The point where the ion fluid velocity exceeds the
sound speed V||i ≥ cs =

√
(T||e + γAT||i)/mi de-

fines the sheath edge according to the Bohm condi-
tion. The adiabatic index is defined as γA = 1 +
(n/T||i)(dT||i/dni). This differs from the common defi-
nition by using the parallel temperature instead of the
isotropic temperature.

Using one or some combination of these definitions of
the sheath entrance, the boundary conditions can be sup-
plied as KFs. To accurately calculate energy-dependent
sputtering rates, the ion heat transmission coefficient and
velocity distribution function at the sheath entrance must
be known. The heat transmission coefficient is defined as
γσ = Qσ/ΓσTσ, where Γσ is the particle flux. The classi-
cal boundary conditions at the sheath are

γe = 2 + ψ, (13)

γi = 2.5 + 0.5(γA + Te/Ti) + Δγi, (14)

M ≡ V||,i/cs ≈ 1, (15)

ψ ≡ eφSE/Te ≈ 0.5 ln mi/me ∼ 3, (16)
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Table 1 Summary of kinetic factors that can be applied to fluid
codes.

kinetic factor used range
elec. heat flux limit. factor αe 0.1 0.03-3
ion heat flux limit. factor αi 0.1 0.1-2
ion viscosity limit. factor b 0.5
Mach number M 1
adiabatic index γA 2 1-3
heat transmis. coeff. γe 4.5-5.5
heat transmis. coeff. γi 2-3
norm. sheath potential ψ 3

where |Δγi| < 1 is a kinetic correction to the ion heat trans-
mission coefficient [30], M is the Mach number, and φSE

is the potential at the entrance to the magnetic presheath,
which includes the potential drop across both the Debye
sheath and magnetic presheath.

2.5 Summary of kinetic factors
The KF of interest are the heat flux limiting factors

ασ, the ion viscosity limiting factor b, the Mach number
M or the adiabatic index γA, the temperature anisotropy
T||,σ/T⊥,σ, the heat transmission coefficients γσ, and the
normalized sheath potential, ψ. The ion viscosity limit-
ing factor b ≈ 0.5 is usually used, but it has been found
in the range 0.1 ∼ 0.5 [30]. According to the Bohm con-
dition, the Mach number should be at least unity at the
sheath edge. The heat transmission coefficients should fall
within the range γi = 2 ∼ 3 and γe = 4.5 ∼ 5.5 as
given by [22], although experiments show that this range is
too restricted [32]. Since the plasma is magnetized, it has
two degrees of freedom, and therefore the adiabatic index
should be approximately 2. The expected range of each KF
is summarized in Table 1.

3. Particle Simulation
3.1 Kinetic models

Kinetic models do not suffer from the shortcomings of
fluid models because they simulate the full 3d-position and
3d-velocity space, but require much more computational
power. Hence, they can be used to supply KF models for
the faster fluid codes. There are three common fully ki-
netic computational methods for evaluating the evolution
of the plasma: Eulerian mesh, semi-Lagrangian mesh, and
particle simulations. The mesh techniques, described in
introductory computational fluid mechanics texts, evaluate
the Boltzmann equation (Eq. 1) to determine the plasma
distribution over phase-space. The Eulerian mesh algo-
rithm computes the plasma flow on a rigid grid of points in
phase-space using, for example, finite difference or spec-
tral equations. In contrast, the semi-Lagrangian mesh al-
gorithm starts each step with a regular layout of fluid ele-

ments and allows each point to evolve freely according to
the Lorentz force, then interpolating back to a regular lay-
out to begin the next step. This is typically accomplished
with the predictor-corrector method.

Mesh algorithms are highly accurate, but they expe-
rience numerical dissipation and restrictive stability con-
ditions. Atomic/molecular processes and the plasma-wall
interaction are also notoriously difficult to model [33]. For
example, the collisions in the Boltzmann equation are de-
scribed by the Fokker-Planck model [17]. However, such
a collision operator requires order N2 computation, where
N is the total number of particles or grid points tracked in
the simulation. Therefore, the Fokker-Planck model is of-
ten replaced with a simplification or with the Krook colli-
sion term [17]. The Krook model assumes a normally dis-
tributed background of neutral particles which elastically
collide with the charged particles. Since the solution of
the Boltzmann equation is a phase-space distribution func-
tion, it must be sufficiently sampled over 1+3+3 dimen-
sions (time, 3 spatial, and 3 velocity), which is difficult
for current computing systems. By assuming symmetries,
such as homogeneity in the toroidal direction or perpen-
dicular to the magnetic field, the dimensionality can be re-
duced to 1+2+3 or 1+2+2 dimensions, respectively. By
tracking the electrons by their gyro-averaged trajectories,
the minimum time-step can be increased and the velocity
dimension of the electron fluid can be reduced by one.

Particle simulations are more representative of the
physical reality. Instead of using the Boltzmann equa-
tion, a collection of particles is evolved according to the
Lorentz force characteristics (Eq. 2). Fields and Lorentz
forces are interpolated from the charge distribution tab-
ulated on a separate spatial grid. Particle properties are
usually updated using the leapfrog algorithm, which is de-
scribed in Eq. 21. In contrast to mesh-only methods, it
is relatively simple to implement collisional processes us-
ing the PIC algorithm, but this method suffers from high
stochastic noise. A pair of classic texts [35, 36] describe
the fundamentals of the PIC algorithm, while newer devel-
opments are covered in a recent review article [37].

3.2 Geometry and boundary conditions
The PARASOL-1D code employs a self-consistent

electrostatic particle-in-cell model with a binary collision
model [10, 26]. A slab geometry is used, such that mo-
tion is restricted to the direction parallel to the magnetic
field and perpendicular gradients are zero, ∇⊥ = 0. Re-
sults from PARASOL-1D represent a radial average over
the region outside the separatrix. Position along the mag-
netic field line with connection length L|| is given by coor-
dinate s and position in the poloidal direction with circum-
ference L is given by coordinate x, as labeled in Fig. 1. The
poloidal and parallel directions are related by the magnetic
field angle of incidence on the divertor plate, x = Θs and
L = ΘL||. Ion velocities in the poloidal, radial, and toroidal
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Fig. 1 Half of simulation domain showing source/sink regions,
magnetic field, and flux parameters. Sources are dis-
played as arrows coming from the top and sinks as
arrows leaving the bottom. Parallel fluxes are shown
crossing boundary lines. src=hot source, rec=recycling,
rad=radiation, div=divertor, x=poloidal axis, s=axis par-
allel to B, Γ=particle flux, Q=heat flux.

directions are denoted as vx, vy, and vz, respectively. The
spatial domain is symmetric across the midpoint, with di-
vertor plates located at x = 0 and x = L. There is no
difference between inboard and outboard divertor plates to
avoid masking the physics we wish to observe. The domain
is divided into three major regions: source, intermediate,
and radiation/recycling. The range of the source region is
x = [Lsrc,a : L/2] = [0.4L : 0.5L], the radiation/recycling
region is x = [Lrad,a : Lrad,b] = [0.01L : 0.21L], and the
intermediate region lies between them.

For this study, the number of spatial cells is set to 800
and the number of ions to N0 = 106, which provides over
1000 particles-per-cell. In general, the time step must be
much less than the inverse of collision frequency, νΔt � 1,
for the collision algorithm to be accurate. The time step is
set to the inverse plasma frequency, Δt = ω−1

pe , which is
valid for all but the most collisional plasmas. A smaller
time step, ωpeΔt < 1, would be required to satisfy νΔt � 1
when λmfp/L|| < 10−3. The simulation is performed until a
stationary state is achieved, which requires approximately

Keq =
2L

csΔt
≈ 2

L
λD

√
mi

me
(17)

steps, where λD ≡ (ε0Tσ/nσe2
σ)1/2 is the Debye length.

Equilibrium is confirmed by a visual examination of the
density and temperature profiles; we ensure that the aver-
age change of each profile in 2000 time steps is less than
the stochastic error of about 1%. In this case, equilibrium
is estimated to occur by Keq ∼ 105, which takes approx-
imately 6 hours on 12 modern CPUs running in parallel.
Equilibrium data is acquired by averaging over time be-
tween 1.8 × 105 steps and 2.0 × 105 steps.

3.3 Numerical scheme
The order of operations in PARASOL-1D is shown

in Fig. 2. The initial condition of each run is a station-
ary plasma with uniform temperature, and density n0 ≡
ε0me/e2. At the start of each step the particles are sorted by
mesh cell but otherwise randomized, so that adjacent ad-
dresses in memory contain particles that occupy the same

Fig. 2 Order of operations in PARASOL-1D code. Particle
and energy souces are also inelastic processes, but are
grouped separately to show their motivation. Modules
that were active in the generation of results in this paper
are black, while inactive ones are red.

cell, simplifying the following Coulomb collision proce-
dure. The charges are projected to the mesh using the
particle-in-cell procedure with a linear-weighting shape
factor, as described by [35], with width equal to the cell
size Δx,

S (x, xi) =

⎧⎪⎪⎨⎪⎪⎩
1

2Δx

(
1 − |x−xi |

Δx

)
if |x − xi| < Δx

0 if |x − xi| > Δx,
(18)

such that each mesh point acquires a charge of

nσ(x j) =
∑

i

qσ

∫
dxS (xi − x j), (19)

where xi is the position of particle i and x j is the position
of mesh point j. The potential is calculated from the den-
sity using Poisson’s equation

−∇2φ = (e/ε0)(Zini − ne), (20)

using the tri-diagonal matrix algorithm on the equivalent
second-order finite difference equation. It is then straight-
forward to find the electric field at the location of each par-
ticle, using the same shape factor as Eq. 19.

The ions are fully traced (1d3v), electrons follow their
guiding centers (1d2v), and neutrals follow straight tra-
jectories. There is a single species of ion with trajecto-
ries calculated by Eq. 2 in fields E = Exx̂ + Eyŷ and
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B = ΘBx̂+(1−Θ2)1/2Bẑ, where Ex is the poloidal field nor-
mal to the divertor plates that is determined by the plasma
potential and Ey specifies the strength of the E × B drift.
The amplitude of the magnetic field B is specified by the
ion gyro-radius normalized to the poloidal circumference
ρi/L.

The positions and velocities of the ions are updated
using the leapfrog algorithm and the electrons are updated
using the predictor-corrector method. The leapfrog method
used to advance the ions in time calculates positions at in-
teger steps and velocities at half-steps,

mi

(
uΔt/2 − u−Δt/2

)
/Δt =

qi

[
E(r0) +

(
uΔt/2 + u−Δt/2

)
× B(r0)

]
,

(
rΔt − r0

)
/Δt = uΔt/2,

(21)

where the superscripts denote the time step relative to the
previously calculated step. The equations that guide the
electron gyrocenters are

dr
dt
= v||

B
B
+ uE×B + u∇B, (22)

me
dv||
dt
= −e

E · B
B
− μ∇||B + mev||uE×B · ∇B

B
, (23)

where v|| is the velocity parallel to the magnetic field, uE×B

is the E×B drift, u∇B is the curvature drift, and μ ≡ mv2⊥/2B
is the magnetic moment. The predictor-corrector method
first calculates the values half a time step ahead using an
explicit scheme. Then the correction step solves the equa-
tions me(vΔt

|| −v0
|| )/Δt = FΔt/2

|| and (rΔt− r0)/Δt = uΔt/2 using
the predicted half-step values. Any particles that reach the
divertor plate are removed from the system.

3.4 Collision model
Coulomb collisions are simulated using a binary col-

lision model that accurately models the Landau collision
integral [38]. The collision time is equal for all particles.
In each time step, each particle collides with an electron
and an ion that occupy the same cell. The algorithm ig-
nores separation of the particles at length scales smaller
than the cell size. Due to the sorting already performed, it
is efficient to pair adjacent addresses for same-species col-
lisions and corresponding addresses for electron-ion colli-
sions. Where the electron and ion number differ in a cell,
members of the smaller population may undergo the colli-
sion procedure multiple times to ensure that all the mem-
bers of the larger population undergo at least one collision
procedure. Each collision conserves total energy and mo-
mentum. The deflection angle θ from the relative velocity
u in the center of mass system of a particle of species α
due to species β is

tan
θα
2
≡

⎛⎜⎜⎜⎜⎜⎝nαZ2
αZ2

βe4 lnΛ

8πε2
0m2

αβu
3

Δt
Nc

⎞⎟⎟⎟⎟⎟⎠
1/2

, (24)

where ε0 is the permittivity of free space, Nc is the number
of times the collision algorithm is performed on a particle

in a time step of length Δt, e is the elementary charge, lnΛ
is the Coulomb logarithm, and mαβ ≡ mαmβ/(mα + mβ) is
the reduced mass. The azimuthal angle of the deflection
relative to u is random. By contrast, neutral collisions use
a Monte Carlo model to simulate charge-exchange colli-
sions, which are deactivated in the data presented.

The initial MFP is specified as an input parameter that
is related to physical parameters as

λmfp0 ≡ 33/2λee =
6
√

3πε2
0

e4ne0Λ
T 2

e0, (25)

where the subscript ‘0’ indicates an initial value.
The actual MFP evolves with the local plasma
density and temperature such that λmfp/λmfp0 =

ne0/ne(Te||/Te0)1/2(Te/Te0)3/2. Characteristics of the
SOL plasma are determined mainly by collisionality and
the quasineutral condition, except in the sheath region. In
order to ensure the collisionless sheath condition in the
present study, we adopt a collision cut-off at a distance
0.01L from the divertor plate, inside which the collision
operation is not performed.

3.5 Source and sink models
Particle sources consist of the hot particle source re-

gion and recycling region, while sinks include the diver-
tor plates and cross-field particle diffusion. Ions lost to
the 100% absorptive divertor plates are replaced one-to-
one at the hot particle and cold recycling sources, Γdiv,i =

Γsrc,i + Γrec,i, except when simulating ELMs. Particle gen-
eration is ambipolar, so electron and ion source fluxes are
equal, Γsrc,e = Γsrc,i, Γrec,e = Γrec,i. Because the ion number
is maintained, but the electrons escape quickly to the diver-
tor, a sheath potential forms and a positive bias develops
in the plasma. The ratio of recycling to hot source particle
generation is an input parameter R = Γrec,σ/(Γsrc,σ+Γrec,σ).
Hot electrons and ions are generated uniformly in space
within the source region with isotropic thermal distribu-
tions of temperature Te0 and Ti0, respectively. Cold parti-
cles are generated uniformly within the radiation/recycling
region with isotropic thermal distributions of temperature
Trec,e and Trec,i. ELM pulses can be injected into the hot
source region and cross-field particle diffusion is imple-
mented as a probabilistic loss of ion-electron pairs that is
unrestricted by region. Neither of these procedures have
been applied in this investigation.

Energy sources and sinks consist of Langevin heating
in the source region, electron radiative cooling in the ra-
diation/recycling region, cross-field energy diffusion, and
interaction with neutrals. When the Langevin heat bath
model is activated, each particle j lying within the source
region experiences heating given by the Langevin equa-
tion,

Δu j

Δt
= −νu j + A,

〈
A2

〉
= 2

TL0

mj

ν

Δt
, (26)

where ν is the Langevin relaxation constant, A is a ran-
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dom variable with uniform distribution in the range set
by the given temperature TL0, and mj is the particle mass.
This heating model alters the speed of the particles, but not
their direction of travel. The relaxation rate must be much
smaller than unity, so that the speed of each particle does
not change significantly in one step. Since all particles are
affected, this model ensures that the velocity distribution
tends towards Maxwellian even in a collisionless plasma
with poor mixing.

Similarly, the electron radiative cooling model is
implemented by decelerating all electrons in the radia-
tion/recycling region while leaving their direction of travel
unchanged. Each electron loses a fraction of the incoming
energy flux proportional to its own kinetic energy. The rel-
ative change in kinetic energy in a period Δt is equal for
each electron j and is much smaller than unity,

mj

Δv2
j

Δt
= −

v2
j∑

k v
2
k

fradQsrc, (27)

where the ratio of the desired radiation energy-loss flux to
the energy flux from the source is given as an input param-
eter frad = Qrad/Qsrc and the sum is performed over each
electron k in the radiation/recycling region. Cross-field en-
ergy exchange employs the same algorithm as electron ra-
diation to remove particle kinetic energy, but it can occur
over the entire connection length. Neutral particles can be
modeled via Monte-Carlo ionization and charge exchange
reactions, but are ignored in the present study. Neither en-
ergy exchange nor neutral reactions are used in this study.

3.6 Estimation of measurement error
Finally, the last step in each cycle is to analyze the

kinetic properties of the plasma. Output consists of three
types of run-time analysis: temporal profiles, spatial pro-
files, and velocity distribution histograms. Temporal pro-
files are produced by directly reporting the plasma proper-
ties in a single cell at each time step, ΔK = 1. No spatial
averaging is performed, so the width of the averaging re-
gion relative the poloidal circumference is the width of a
single mesh point, Δl/L = 1/800. The error in the tempo-
ral data is on the order of

δ = 1/
√
ΔKN(Δl/L) ≈ 3%. (28)

Spatial profiles are produced by averaging the plasma
properties over ΔK = 2000 time steps to produce smooth
results. Therefore, the error in the spatial distribution is
only

δ = 1/
√
ΔKN(Δl/L) ≈ 0.1%, (29)

where N is the number of particles tracked in the simula-
tion.

To create the velocity distribution histograms, the do-
main length is divided into sections of width Δl/L = 1/11.
All particles in each section are binned by velocity over a

time period of ΔK = 2000 steps. For this study, we report
results from the section that is contained entirely within
the intermediate region, s/L|| = [0.27 : 0.36]. The parallel
velocity is divided into n||,bin = 100 bins and the perpendic-
ular into n⊥,bin = 50 bins. The size of each bin is a small
fraction of the thermal velocity, Δv = 0.1vT0. In this pa-
per, we present the velocity distributions averaged over the
perpendicular directions. Assuming uniform distribution
in velocity space, each bin has order 103 particles, so the
average error is

δ = 1/
√
ΔK(N/n||,bin)(Δl/L) ≈ 0.1%, (30)

which is a reasonable estimate at the distribution peak. It
is more accurate to assume a Maxwellian distribution. The
maximum velocity at which the error becomes equal to the
signal amplitude, δ ∼ 1, is found by evaluating

1 = ΔK

(
Δl
L

)
N
Δv

vT0
exp

⎛⎜⎜⎜⎜⎝−v
2
err

v2
T0

⎞⎟⎟⎟⎟⎠ , (31)

which gives the maximum velocity verr ≈ 4.0vT0, corre-
sponding to a drop from maximum of about 10−7. How-
ever, when examining the distribution functions in the re-
sults section, it appears that the data is overcome by noise
at a lower value of verr ≈ 3.0vT0, corresponding to a drop
from maximum of about 10−4. This is consistent with a
local density that is one order of magnitude less than the
average, which can occur when the radiation is high or
Langevin heating is used.

3.7 Measurement and noise reduction
Some post-processing is necessary to measure a num-

ber of plasma properties, namely the flux asymmetry, the
spatial gradients, and the location of the sheath entrance.
Before any calculations are done, all spatial profiles are
smoothed by replacing each point j with an average of the
five nearest points, a j = (a j−2 + a j−1 + a j + a j+1 + a j+2)/5,
where appropriate adjustments are made at the edges of the
domain. To determine the flux asymmetry of the distribu-
tion, the velocity distribution of the population traveling
away from the divertor plate is subtracted from that of the
population traveling towards it,

Ξ{ fσ(v||)} = fσ(ṽ||) − fσ(−ṽ||). (32)

Likewise, the heat flux asymmetry can be obtained as

Ξ{ṽ3
|| fσ(v||)} = ṽ3

||
[
fσ(ṽ||) − fσ(−ṽ||)] , (33)

where ṽ|| = v|| − V||,σ is the velocity relative to the fluid ve-
locity. The spatial gradients are obtained by the second-
order finite difference definition a′j = (a j+1 − a j−1)/2h,
where h is the cell width. Unfortunately, even when using
smoothed input data, this process adds a significant amount
of noise. To acquire useful results, a 21-point average is
performed, which reduces the noise to managable levels.

To find the sheath entrance, we use the average loca-
tion at which sheath conditions 1-4 described in Sec. 2.4
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are fulfilled. Each cell from the edge of the source region
to the divertor plate is checked until the following inequal-
ities are no longer satisfied,

1. x ≈ 3ρL, (34)

2. |Zini − ne| < ε(ne + Zini)/2, (35)

3. |ZiniVi − neVe| < ε(neVe + ZiniVi)/2, (36)

4.
∣∣∣V||iΘ − Vxi

∣∣∣ < ε(V||iΘ + Vxi)/2, (37)

where ε is a small non-zero adjustable parameter required
to compensate for PIC noise. We find 0.03 to give good
results.

4. Results and Discussion
The results presented in this section are for simula-

tions of a hydrogenic plasma, Z = 1 and mi/me = 1800,
with equal electron and ion source temperatures, Te0 = Ti0.
The magnetic field angle of incidence is Θ = 0.2 and the
ion gyro-radius is ρi/L = 5 × 10−3. There is no recycling
from the divertor plates and no neutral collisions. Fig-
ure 3 shows the ratio of the electron conductive heat flux to
the Spitzer-Härm collisional approximation and to the one-
way free-streaming heat flux of a Maxwellian distribution
with the same flow velocity and temperature. Figure 3 (a)
clearly shows that the Spitzer-Härm expression (Eq. 8) is
accurate when the MFP is less than the connection length,
λmfp < L||. Figure 3 (b) indicates that the electron conduc-
tive heat flux does approach some constant fraction of the
one-way free-streaming heat flux (Eq. 9), but only after a
gradual decline from a peak at λmfp ∼ L|| when the radi-
ation rate is low. These plots show that the justification
for using a harmonic average of the two limits is reason-
able, but the presence of the peak in Fig. 3 (b) is difficult to
accommodate using such a simple theory. High radiation
rates create a strong temperature gradient and low plasma
densities in the intermediate region. This reduces the MFP,
pushing all the data points for the high radiation case to the
left in the figures.

4.1 Radiation effects on kinetic factors
The four KF of interest, the electron and ion

heat flux limiting factors, adiabatic index, and paral-
lel/perpendicular temperature anisotropy, are shown in
Fig. 4 as a function of the normalized MFP, λmfp/L||, and ra-
diation rate, frad. Corresponding plasma properties for the
high and low radiation cases are shown in Fig. 5. These in-
clude the ion density and its gradient, Mach number and its
gradient, ion parallel temperature and its gradient, plasma
potential, and electric field. All values are acquired at equi-
librium in the intermediate region with only the hot particle
source present. By observing these figures, it is apparent
that the plasma has significantly different behavior in the
three regimes: collisional λmfp/L|| < 10−2, weakly colli-
sional 10−2 < λmfp/L|| < 1, and collisionless 1 < λmfp/L||.
The collisional and collisionless limits can be solved an-

Fig. 3 Dependence on normalized MFP of ratio of electron
conductive heat flux to (a) the Spitzer-Härm collisional
approximation (Eq. 8), and to (b) the one-way free-
streaming heat flux of a Maxwellian distribution with the
same flow velocity and temperature (Eq. 9) for three dif-
ferent radiation rates. All values measured at equilibrium
in range s/L|| = [0.27 : 0.36] with only hot particle source
present.

alytically, but the response of the KF in the weakly colli-
sional regime has not yet been adequately explained.

Figures 4 (a) and (b) show the electron and ion heat
flux limiting factors, αe and αi, respectively. Since the heat
flux approaches the Spitzer-Härm expression in the col-
lisional limit, the heat flux limiting factors decrease pro-
portional to the MFP as the contribution from the one-
way free-streaming component to the harmonic average
becomes negligible. In the collisionless limit, both the
heat flux limiting factors appear to become constant when
λmfp/L|| ∼ 1. In the absence of radiation, the limiting fac-
tors approach αe → 0.04 and αi → 0.4. When the radia-
tion rate is high, frad = 0.6, the electron limiting factor in-
creases by an order of magnitude, αe → 1, but αi does not
change. High radiation produces a perpetual fluctuation
in the collisionless regime which prevents true equilibrium
from being attained.

The adiabatic index shown in Fig. 4 (c) is greater than
unity in the collisional and collisionless regimes, but it dips
to γA = 0.5 in the weakly collisional regime. High radi-
ation causes the drop to less than unity to shift to much
longer MFP; from λmfp/L|| = 0.03 to 3. Typically the adi-
abatic index is calculated using the isotropic temperature,
making values less than unity impossible. By calculating
with the parallel temperature, it becomes a good indica-
tor of transport. A value less than unity means that the
density and temperature gradients point in opposite direc-
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Fig. 4 Dependence of kinetic factors on the normalized MFP
λmfp/L||: (a) Electron heat flux limiting factor αe, (b) ion
heat flux limiting factor αi, (c) adiabatic index γA, and
(d) temperature asymmetry T ||/T⊥. All values measured
at equilibrium in range s/L|| = [0.27 : 0.36] with only
hot particle source present. Electron and ion temperature
asymmetries are marked with hollow and filled symbols,
respectively.

Fig. 5 Dependence of normalized SOL properties on the nor-
malized MFP λmfp/L||: (a) ion density and gradient, (b)
Mach number and gradient, (c) ion parallel temperature
and gradient, and (d) plasma potential and electric field.
Gradients are parallel to magnetic field. All values mea-
sured at equilibrium in range s/L|| = [0.27 : 0.36] with
only hot particle source present. Values are marked with
solid boxes and labeled on the left axis. Gradients are
marked with hollow boxes and labeled on the right axis.
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tions. One can see that when the density gradient shown
in Fig. 5 (a) peaks, the parallel temperature gradient shown
in Fig. 5 (c) becomes negative at the same time, permitting
the adiabatic index to become less than unity. The drop in
ion parallel temperature gradient corresponds to the elec-
tric field shown in Fig. 5 (d) falling to zero in the interme-
diate region, i.e. the plasma changes from a conduction-
limited regime to a sheath-limited regime.

Figure 4 (d) shows that over the weakly collisional
regime 10−2 < λmfp/L|| < 1, the ions shift quickly from
being isotropic to the parallel temperature being equal to
1/6 of the perpendicular temperature. When the source
ions are cold, the anisotropy in the collisionless limit is
T||/T⊥ = 1/3 because the parallel heat flux is three times
higher than the perpendicular heat flux [28]. However,
when the ion source is the same temperature as the elec-
tron source and the adiabatic index is γA = 3, then the ion
sound speed doubles. This increases the parallel transport
by a factor of two and changes the anisotropy from 1/3 to
1/6. Unlike the ions, the electrons are fully isotropic in the
weakly collisional regime and instead become anisotropic
over the range 1 < λmfp/L|| < 102. The plot indicates that
the electrons become even more anisotropic than the ions
in the collisionless limit. As the radiation rate increases,
the MFP range over which only the ions are anisotropic
becomes one order of magnitude instead of two.

The transition from conduction- to sheath-limited
plasma is apparent in Fig. 5 (a) in the weakly collisional
regime; at λmfp/L|| = 1 the density becomes unity and there
is a large drop in the density gradient. This effect is mit-
igated by high radiation levels, which maintain the large
gradient even in a collisionless plasma so as to keep the
density low in the radiation/recycling region. The tran-
sition from conduction- to sheath-limited plasma also re-
duces the ion flow velocity, parallel temperature, and elec-
tric field. Both the ion flow velocity and its gradient shown
in Fig. 5 (b) decrease by roughly a factor of two when
changing from a collisional to a collisionless plasma. Sim-
ilarly, the ion parallel temperature shown in Fig. 5 (c) de-
creases by a factor of two, but its gradient decreases pre-
cipitously. The reduction in parallel temperature is greater
near the source than the divertor, leading to a negative
ion temperature gradient. This leads to the aforemen-
tioned case of the adiabatic index becoming less than unity.
The potential and electric field decrease gradually, with a
change of one order of magnitude covering a MFP range of
six orders of magnitude, as shown in Fig. 5 (d). However,
the presence of radiation causes the transition to shorten to
a MFP range of only two orders of magnitude.

All the electron and ion EDFs shown in Fig. 6 ex-
hibit a bulk population and a high-energy tail. The ver-
tical axis is normalized such that the total ion number is
unity,

∫ 1

0
dx

∫ ∞
−∞ dv3 fi(x) = 1. The horizontal axis is nor-

malized to the source temperature Te0 in plots (a) and (c),
so the high-energy tails coincide; to the electron parallel
temperature T||,e in the intermediate region in plot (b); and

Table 2 Properties of the electron and ion parallel energy distri-
butions shown in Fig. 9 for case with only hot particle
source present.

λmfp frad nt
e/n

b
e T b

e T t
e

0.2 0.0 0.11/5.7 0.29 0.83
0.2 0.6 0.075/5.8 0.20 0.94
20 0.0 0.075/6.6 0.17 0.90
20 0.6 0.088/5.9 0.016 0.82
λmfp frad V||,i nt

i/n
b
i T b

i T t
i

0.2 0.0 1.8 × 10−2 1.0/5.6 0.30 0.69
0.2 0.6 2.0 × 10−2 0.59/5.7 0.27 0.72
20 0.0 1.3 × 10−2 1.3/3.4 9.9 × 10−3 0.70
20 0.6 1.1 × 10−2 1.6/3.3 7.0 × 10−3 0.68

Note: MFP λmfp is normalized to connection length L||, ion
fluid velocity V||,i is normalized to source thermal velocity
(Ti0/mi)1/2, densities nσ are normalized to make the total
ion number unity, and bulk and tail temperatures T b

σ, T t
σ

are normalized to source temperature Tσ0.

to the ion sound speed cs in plot (d). The ion distribu-
tions are centered on the flow velocity fi(ṽ||). Table 2
tabulates the properties of the bulk and tail when fitted
to Maxwellian distributions. One can see that the tail
temperature, T t

σ, is always near the source temperature,
which is unity because of normalization. In a collisionless
plasma, the electron distribution has a bulk population of
low-energy electrons that are trapped in the SOL and only
occasionally get enough energy through collisions to es-
cape. This bulk population should take the form of a cutoff
Maxwellian, as can be seen when λmfp/L|| = 20, frad = 0 in
Fig. 6 (a), or even more clearly in Fig. 6 (b). As the plasma
becomes more collisional, the trapped population diffuses
in velocity space more rapidly, causing the bulk to tend to-
wards a complete Maxwellian distribution, as in the cases
with λmfp/L|| = 0.2. Radiation has the effect of reducing
the temperature of the bulk population, but does not af-
fect the tail until after it has passed through the sampling
region. Since all distributions in Fig. 6 (b) have a similar
magnitude and slope near zero velocity, we can see that
the high-energy tail makes a very small contribution to the
overall density or plasma temperature. However, because
the bulk electron distribution is highly symmetric, the tail
is the dominant source of electron heat flux. This shows
that the electron heat flux is more dependent on the source
temperature than the local temperature, i.e. the core deter-
mines the heat flux in the SOL more than the SOL does.

Like the electron distribution, the ion distribution has
a low-energy bulk and a high-energy tail population, al-
though the ion distribution is shifted by the fluid velocity.
The bulk population is not due to trapping, as is the case
with electrons. The source distribution is Maxwellian, but
slow diffusion in velocity space steepens the slope at the
fluid velocity. Figure 6 (d) shows that the width of the peak
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Fig. 6 Electron parallel energy distribution fe(v||) with horizon-
tal axis normalized to the (a) source temperature and (b)
the local temperature in the intermediate region. Ion dis-
tribution fi(ṽ||) normalized to (a) source temperature and
(b) local parallel ion sound speed in the intermediate re-
gion. Positive and negative horizontal axes indicate mo-
tion towards and away from divertor, respectively. Hot
particle source only.

is related to the MFP for both electrons and ions, but only
electrons show a response to the radiation, since ions are
not reflected from the sheath.

4.2 Modification of kinetic factors with
Langevin heat bath

Testing was performed for the same parameters as in
the previous section, but with the addition of Langevin
heating. The Langevin heat bath was set to have the same
temperature as the hot particle source TL0 = Te0 = Ti0 and
a relaxation rate of ν = 10−3ωpe. Figures 7, 8, and 9 show
the resulting KF, plasma properties, and EDFs, mirroring
the cases without Langevin heating in Figs. 4, 5, and 6.

Activating the Langevin heat bath has a significant ef-
fect on all the KF except for the electron heat flux lim-
iting factor αe, which is shown in Fig. 7 (a). The plot of
αe appears similar to the previous case, although a small
anomaly appears at λmfp/L|| ∼ 3 in the radiationless case
because all the gradients reverse in the intermediate region.
As the radiation grows from frad = 0.0 to frad = 0.6, the
collisionless limit of αe grows from 0.08 to 0.7. The ion
heat flux limiting factor shown in Fig. 7 (b) also has sim-
ilarities to the reference case. However, the low radiation
case of αi exhibits a strong anomaly between λmfp/L|| ∼ 0.3
and 3, which causes it to become negative. In the colli-
sionless limit, αi → 0.02 without radiation, but appears to
approach 0.01 when frad = 0.6. In the collisionless regime,
Langevin heating strengthens the fluctuations in the inter-
mediate region. In the low radiation cases, fluctuations be-
gin to appear when λmfp/L|| > 300, but in the high radiation
case, they start as low as λmfp/L|| > 15.

The adiabatic index is found to be near unity in the
collisional regime. However, in the collisionless case, the
gradients lie very close to zero, which makes the adiabatic
index γA poorly defined. This is indicated in Fig. 7 (c)
by the lack of points for the low radiation cases above
λmfp/L|| = 0.1 and the high radiation case above 3. In
the weakly colliisonal regime, high radiation can cause the
gradients to point towards the source region. This produces
a very large negative value γA ∼ −4.

In the collisional case, both the ions and electrons are
isotropic, but the ion parallel temperature drops to 1/3 of
the perpendicular temperature when the plasma becomes
collisionless. As explained for the previous case, since the
ion heat flux follows the expression q|| = 3q⊥ [28], the par-
allel heat is transported away three times faster than the
perpendicular heat with a corresponding drop in the paral-
lel temperature. However, since the trapped electrons pass
through the Langevin heat bath many times, they tend to
remain isotropic.

Figure 8 shows that when Langevin heating is added,
the ion density becomes roughly 2/3 as large, but the den-
sity gradient becomes much smaller in the weakly col-
lisional and collisionless regimes. In fact, the density
gradient may even go to zero. The ion flow velocity is
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Fig. 7 Dependence of kinetic factors on the normalized MFP:
(a) Electron heat flux limiting factor αe, (b) ion heat flux
limiting factor αi, (c) adiabatic index γA, and (d) temper-
ature asymmetry T ||/T⊥. Many points are absent from the
γA plot because it becomes poorly-defined. All values
measured at equilibrium in range s/L|| = [0.27 : 0.36]
with Langevin heating present. Electron and ion tem-
perature asymmetries are marked with hollow and filled
symbols, respectively.

Fig. 8 Dependence of normalized SOL properties on the nor-
malized MFP λmfp/L||: (a) ion density and density gradi-
ent, (b) Mach number and gradient, (c) ion parallel tem-
perature and gradient, and (d) plasma potential and elec-
tric field. Gradients are parallel to magnetic field. All val-
ues measured at equilibrium in range s/L|| = [0.27 : 0.36]
with Langevin heating present. Values are marked with
solid boxes and labeled on the left axis. Gradients are
marked with hollow boxes and labeled on the right axis.
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Fig. 9 Electron parallel energy distribution fe(v||) with horizon-
tal axis normalized to (a) source and (b) local temper-
ature. Ion distribution fi(ṽ||) normalized to (a) source
temperature and (b) parallel ion sound speed. Positive
and negative horizontal axes indicate motion towards
and away from divertor, respectively. Langevin heating
present.

Table 3 Properties of the electron and ion parallel energy distri-
butions shown in Fig. 9 for case with Langevin heating
present.

λmfp frad nb
e T b

e

0.2 0.0 4.044 0.921
0.2 0.6 3.234 0.603
20 0.0 3.854 0.882
20 0.6 3.265 0.713
λmfp frad V||,i nb

i T b
i

0.2 0.0 3.16 × 10−2 3.7 0.38
0.2 0.6 3.92 × 10−2 5.7 0.64
20 0.0 3.46 × 10−2 7.7 0.84
20 0.6 3.88 × 10−2 8.0 0.78

Note: Same normalizations as Table 2.

roughly constant for all values of the MFP, about 50%
faster than the collisionless case when there is no heating,
as shown in Fig. 8 (b). When the ions change from colli-
sional and isotropic to collisionless and nonisotropic, there
is a range of MFP under which the temperature gradient
points towards the source, rather than the divertor, as is
the case with both plasma species without Langevin heat-
ing. The normalized potential in the intermediate region
becomes very large, about a factor of two greater in the
collisional regime and a factor of ten greater in the colli-
sionless regime compared to the previous case, as shown
in Fig. 8 (d). However, the electric field is almost exactly
two times greater than the previous case.

The EDFs for the Langevin heating case are shown in
Fig. 9 and the fitted values are recorded in Table 3. Tables 2
and 3 show that the bulk temperatures are generally larger
with Langevin heating such that, in most cases, they are
very near the source temperature. Comparing Figs. 6 (a)
and 9 (a), one can see that Langevin heating eliminates
the high-energy tail in the electron EDF. The majority of
ions travel at the flow velocity and all ions moving faster
than the flow velocity have a Maxwellian distribution with
the same temperature as the source, which is shown in
Figs. 9 (c) and (d). Unlike the case without heating, there
can be a small non-stationary fluctuation in the plasma po-
tential outside the source region that causes ion trapping,
resulting in a small population of nearly stationary ions.
This population is not shown in Figs. 9 (c) and (d) because
it was manually removed for clarity.

One would expect that, due to the tendency of a
plasma to approach a Maxwellian distribution in the pres-
ence of Langevin heating, the effects of collisionality
would be much reduced. Indeed, by comparing Fig. 9 (a)
with Fig. 6 (a), one sees that changing the MFP affects the
electron distribution much less when Langevin heating is
present. However, this is not the case for the ion distribu-
tion. One can see in Figs. 6 (c) that without Langevin heat-
ing, ions are completely unaffected by electron radiative
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cooling. However, Fig. 9 (c) shows that the combination of
heating and radiation increases the number of high-energy
ions.

5. Summary
We described the fluid model and explained why fluid

codes cannot self-consistently solve for the energy distri-
bution function in the scrape-off layer. Closure parameters
and boundary conditions at the sheath entrance, so-called
kinetic factors, must be provided using theory or fully ki-
netic simulations. Particle-in-cell codes model the Lorentz
force from first principles, so they are useful for explor-
ing the response of kinetic factors to various forcings. We
presented results from the PIC code PARASOL-1D for
four KF over a wide range of collisionalities, from colli-
sional to collisionless, and explained their behavior using
the electron and ion energy distribution functions.

PARASOL-1D shows that the conductive heat flux is
accurately described by the Spitzer-Härm expression in the
collisional limit and asymptotes to a constant value in the
collisionless limit. When the plasma is weakly collisional,
such that the plasma is neither conduction- nor sheath-
limited, the kinetic factors exhibit many unique character-
istics: the heat flux limiting factors αe and αi change from
MFP proportionality to a constant value; the adiabatic
index becomes less than unity because the temperature
gradient reverses; and the ions become anisotropic while
the electrons remain isotropic. The electron EDFs are
Maxwellian in the collisional regime, but in the weakly
collisional regime, they form a high-energy tail. As the
plasma becomes collisionless, the bulk Maxwellian cut-off
velocity due to the sheath potential becomes more clearly
defined. The ion EDFs are shifted-Maxwellian distribu-
tions with the bulk traveling at the flow velocity and a ther-
mal population traveling faster than the flow velocity.

We investigated the response of the KF to different
configurations of energy sources and sinks. Electron ra-
diation energy loss increases the heat flux limiting factors
and adiabatic index, while reducing the MFP at which par-
ticles become anisotropic, more so for the electrons. The
radiation reduces the temperature of the bulk electron dis-
tribution, without much affecting the ions. Langevin heat-
ing does not have much of an effect on the electron heat
flux limiting factor, but it makes both the ion heat flux lim-
iting factor more erratic and the adiabatic index poorly de-
fined. It also prevents the electrons from deviating signif-
icantly from an isotropic distribution. Heating thermalizes
the electron energy distribution function, but does not af-
fect the ions.

These results should be useful for updating fluid
codes, but a more rigorous theory of the weakly collisional
regime should be developed to better explain these phe-
nomena. We intend to present an analytic calculation of
the heat flux using a simple model of the electron EDF in
a forthcoming paper.
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