[Table of Contents]

Plasma and Fusion Research

Volume 5, 008 (2010)

Regular Articles


Flute-Mode Stability of Quadrupole-Anchored Tandem Mirror Plasmas
Hitoshi HOJO
Plasma Research Center, University of Tsukuba, Tsukuba 305-8577, Japan
(Received 10 June 2009 / Accepted 8 January 2010 / Published 24 February 2010)

Abstract

We study the flute-mode stability of quadrupole-anchored tandem mirror plasmas. The present analysis is based on Newcomb's Lagrangian density with an assumption of small Larmor radius of ions for paraxial approximation. A radial eigenmode equation for flute perturbations is derived without an eikonal approximation in flux coordinates, where effects of E × B plasma rotation due to an ambipolar electric field are considered. The obtained eigenmode equation is applicable to a mode with an arbitrary azimuthal mode number and can describe interchange, E × B rotational, and Kelvin-Helmholtz modes driven by the shear effect of E × B plasma rotation. A quadratic dispersion equation in perturbation frequency ω is derived based on a simplified cylindrical plasma model and is used to discuss the flute stability of quadrupole-anchored GAMMA 10 tandem mirror plasmas, where the anchor beta required for plasma stability is calculated for the m = 1 and 2 modes for different values of central-cell ambipolar potential.


Keywords

flute-mode stability, tandem mirror plasma, quadrupole-anchor, Newcomb's Lagrangian density, beta value, interchange mode, E × B rotational mode, Kelvin-Helmholtz mode

DOI: 10.1585/pfr.5.008


References

  • [1] H. Hojo, M. Inutake, M. Ichimura, R. Katsumata and T. Watanabe, Jpn. J. Appl. Phys. 32, 2116 (1993).
  • [2] M. Inutake, A. Ishihara, R. Katsumata, M. Ichimura, A. Mase, K. Ishii, Y. Nakashima, Y. Nagayama, N. Yamaguchi, H. Hojo, I. Katanuma and T. Tamano, Int. Conf. Open Plasma Confinement Systems for Fusion, ed. A. Kabantsev (World Scientific, 1994), p.51.
  • [3] X.S. Lee and P.J. Catto, Phys. Fluids 24, 2010 (1981).
  • [4] T.B. Kaiser and L.D. Pearlstein, Phys. Fluids 26, 3053 (1983).
  • [5] W.M. Nevins and L.D. Pearlstein, Phys. Fluids 31, 1988 (1988).
  • [6] D.A. D'Ippolite, B. Hafizi and J.R. Myra, Phys. Fluids 25, 2223 (1982).
  • [7] D.A. D'Ippolite and J.R. Myra, Phys. Fluids 27, 2256 (1984).
  • [8] B.I. Cohen, R.P. Freis and W.A. Newcomb, Phys. Fluids 29, 1558 (1986).
  • [9] W.A. Newcomb, Phys. Fluids 28, 505 (1985).
  • [10] H. Hojo, Kakuyugo Kenkyu 65, 639 (1991) [in Japanese].
  • [11] M.N. Rosenbluth and A. Simon, Phys. Fluids 8, 1300 (1965).
  • [12] H. Hojo, J. Plasma Fusion Res. 75, 695 (1999).
  • [13] M. Ichimura, R. Katsumata, M. Inutake, A. Ishihara, H. Hojo, I. Sasaki, K. Ishii, A. Mase, Y. Nakashima and T. Tamano, Int. Conf. Open Plasma Confinement Systems for Fusion, ed. A. Kabantsev (World Scientific,1994), p.69.
  • [14] A. Mase, A. Itakura, T. Tokuzawa, Y. Ito, H. Satake, H. Hojo, M. Ichimura, M. Inutake, K. Ishii, R. Katsumata and T. Tamano, Int. Conf. Open Plasma Confinement Systems for Fusion, ed. A. Kabantsev (World Scientific, 1994), p.211.

This paper may be cited as follows:

Hitoshi HOJO, Plasma Fusion Res. 5, 008 (2010).