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We study the flute-mode stability of quadrupole-anchored tandem mirror plasmas. The present analysis
is based on Newcomb’s Lagrangian density with an assumption of small Larmor radius of ions for paraxial
approximation. A radial eigenmode equation for flute perturbations is derived without an eikonal approximation
in flux coordinates, where effects of E X B plasma rotation due to an ambipolar electric field are considered. The
obtained eigenmode equation is applicable to a mode with an arbitrary azimuthal mode number and can describe
interchange, E X B rotational, and Kelvin-Helmholtz modes driven by the shear effect of E x B plasma rotation.
A quadratic dispersion equation in perturbation frequency w is derived based on a simplified cylindrical plasma
model and is used to discuss the flute stability of quadrupole-anchored GAMMA 10 tandem mirror plasmas,
where the anchor beta required for plasma stability is calculated for the m = 1 and 2 modes for different values
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of central-cell ambipolar potential.

© 2010 The Japan Society of Plasma Science and Nuclear Fusion Research

Keywords: flute-mode stability, tandem mirror plasma, quadrupole-anchor, Newcomb’s Lagrangian density, beta
value, interchange mode, E X B rotational mode, Kelvin-Helmholtz mode

DOI: 10.1585/pfr.5.008

1. Introduction

The magnetohydrodymamic (MHD) stability of
plasma is very important for achieving a high-beta plasma
in tandem mirror fusion research. In a tandem mirror with
a minimum-B anchor for MHD stability, such as GAMMA
10, the beta value attainable in a central cell depends
strongly on the beta value in an anchor cell and magnitude
of an ambipolar electric field [1,2].

Many studies of MHD stability on a tandem mirror
plasma have been reported. However, they have con-
centrated mainly on studying high-m ballooning modes
of a quadrupole-anchored tandem mirror plasma with an
eikonal approximation [3-5], and low-m flute and balloon-
ing modes of an axisymmetric tandem mirror plasma [6—
8], where m is an azimuthal mode number. Presently
in tandem mirror experiments, the MHD stability of a
quadrupole-anchored tandem mirror plasma against low-m
flute perturbations is the most important concern, because
the attained beta values are still low.

In this paper, we study the flute-mode stability of a
quadrupole-anchored tandem mirror plasma. The analysis
is based on a Lagrangian density developed by Newcomb
[9], which assumes the paraxial approximation and small
Larmor radius of ions. Starting from Newcomb’s La-
grangian density, we derive a radial eigenmode equation
for flute-mode perturbations that includes the effects of
E x B plasma rotation due to an ambipolar electric field.
The obtained eigenmode equation is applicable to a flute
mode with an arbitrary m and can describe interchange,
E x B rotational, and Kelvin-Helmholtz modes driven by
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the shear effect of E x B plasma rotation [10] and ion finite
Larmor radius (FLR) stabilizing effect.

In the following section, we derive a radial eigen-
mode equation for low-frequency flute-mode perturba-
tions in a quadrupole-anchored tandem mirror plasma from
Newcomb’s Lagrangian density. In Sec.3, we derive a
quadratic dispersion equation in the perturbation frequency
w from the radial eigenmode equation obtained in Sec. 2,
assuming a cylindrical plasma model. In Sec. 4, we discuss
the flute-mode stability of quadrupole-anchored GAMMA
10 plasmas based on the quadratic dispersion equation in
w, especially the interchange modes, EX B rotational mode,
and ion FLR stabilizing effect.

2. Derivation of Flute Mode Equation

In this section, we study the flute-mode stability
of a quadrupole-anchored tandem mirror plasma such as
GAMMA 10. The starting point is Newcomb’s Lagrangian
density [9, 10] in a paraxial approximation, which is given
by

L= % (ox;x;,+Sx;x9g—Rxyxg—0x.Xx;),
(D
with
S =20, - (HB%) /2B,
R=—p®,, +(HB*)y®,/2B - ByK,/B,
H =818 Y (/) [ fududef |n].

© 2010 The Japan Society of Plasma
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K =28 (M*/q) f fi*duds [oy .
Q=B"+P, - P,

where x = (x,y) is the position of a magnetic field line
expressed as a function of flux coordinates (i, 6, z), where
z is the coordinate along the field line in the paraxial ap-
proximation. @, f, p, M, q, P, (P)), and & are the am-
bipolar potential, equilibrium distribution function, equi-
librium mass density, mass, charge, perpendicular (paral-
lel) plasma pressure, and particle energy per unit mass, re-
spectively, given by

& =uB+v}/2+qP/M,
and y is the magnetic moment per unit mass, given by
o= vi /2B,

The subscripts of (¥,6,z) and time ¢ accompanied by a
comma indicate the partial derivative; that is, A, = 0A/0t
and A, = 0A/0z. In the flux coordinates, the equilibrium
magnetic field B is expressed as

B = Bb = Vy x V4,

where b = B/|B|.

We now introduce an action integral for the La-
grangian density L under the constraint that perturbations
of magnetic field lines are incompressible.

53
1:f dtf
1

where A is an uncertain coefficient, and x* = x x b. We
now try to find the optimal state of x in the action integral
I. For the deformation of the magnetic field line from x
to x + ox with 6x = 0 at #; and t,, from the stationary
condition 61 = I(x + 6x) — I(x) = 0, we obtain a set of
Euler-Lagrange equations,

d‘pc;gdz [L+A(x,, - x5 — D],

2)

x’w -F+ /l’w = O, (3)
Xg - F + /1’9 =0, (4)
with
_ 0
F = PX 1yt — B Ex,z + Sx’,g - Rxseg. (5)
»Z

If we linearize Egs. (3) and (4) with respect to & = dx, we
obtain

pxXy &y —BEy - %x,zL ~Bxy [%f,ZL

+Sx,l,,-§’19—Rx,¢-f’gg—Rf’w~x,gg+6/l,¢ :0, (6)
0 0
pPX - 'f,tt - Bf,e : [Ex,z]’z — Bxg - [Efz]z
+Sx,9 . fJg—Rx,g . g,HG_Ré:,H * X 00 +5/1’9 =0. (7)
When we introduce v, defined by
y=6A—BE- [Qx,z] , ®)
B "l
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we obtain

0
Vo = 6/1,1/, - Bf,l// . [Ex,z] .

—£. [3(%)Z Xy + QK+ Qk,w} , ©)
~&[8(2) xa+ 0. 10

where we used k = x ., k being the curvature vector, and
assumed that [B(Q/B).],, = 0 and Qy = 0. An external
magnetic field B, in vacuum is a function of z only in the
paraxial approximation. Thus, in this case, from the axial
equilibrium equation in the z direction, we obtain

BZ

5(5).] = (5 ) =52 =

Substituting Eqs. (9) and (10) in (7) and (8), we obtain

B2(z)
2

B

pxy £t Quf k= B[Sy £ - xy 8
+8xy-Ep—Rxy -Egy+ Rf,‘/, “Xgg+ vy =0,
an
P €~ B S £ xa 0] +Sxa-Es
(12

32

- Rx’g . {f’gg — Rf,@ *Xggt Ve = 0.

If we define u = x, and v = x g, Eqs. (11) and (12) can be
rewritten as

pu- (&, +SE,—REy)—RE, vg+ Qué &
0

—B[E(u-f’z—u,z~§)]’z+v,¢, =0, (13)
pv- (£ +SEg~ RE ) = RE, v
—B[%(v~§z—v,z-§) +va=0. (14)
If we here express the flute perturbation &, as
E=Xu+Yv (15)

for X and Y we obtain

E@X,+SXo—RXg)+ F(Y; +SYg — RY g9)
F
tag (SX, - 2RX ) — 24E (SY, — 2RY )
+2FRY + 20ERX,, + 20FRY ;, — 26, P, X
-B g(EXZ + FYZ)] + iQYZ +v, =0, (16)
B i PR R

F(oX i+ 85X — RXg9) + G(pY ;s + SY g — RY gg)
+ % (SX, - 2RX ) — 24 F (SY, — 2RY )
+2FRY+ 2ERX 4 + 2UFRY  + (G— 4’ E) RY

0 .0
_B E(FX,Z+GY,Z)]’Z—B(zﬁx)jvﬂ:o, (17)
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where k, and i are normal components of the curvature and
parallel current, respectively, defined by «, = u - k and

i=b-(Vxb)=B(u, v-u-v;). (18)
In the derivation of Eq. (16), we used the following rela-
tions:

Q, = (32 +P, - P”).w = 2Py +(PL=P),
= —2P’¢, (19)

0
B<lﬁ)z = 2K9P’¢,,

(20)
where kg = v - k is a geodesic component of the curvature.
Here, we assume flute-mode perturbations, that is, X, =
Y. = 0. We also assume that physical quantities such as
density, pressure, and electrostatic potential are symmetric
with respect to the central-cell midplane, so p(—z) = p(z)
and P(—z) = P(2). In this case, if we flute-average Eqs. (16)
and (17) and then subtract the -derivative of Eq. (17) from
0-derivative of Eq. (16), we obtain

(PE)Xu + (SEYX g1 — (REYX g0 — 20(S E)Y,

+ 4Y(RE)Y g+ 20(RE)X ; = 2 (ky Py ) X)

- (<pG>Y,n +(SG)Y gy — (RGYY gy + %ﬁw )X,

0, 21

~Liroyx,+ Zzp(RE)X,g)
4 v

where flute averaging is defined by

<A>:f

and we used the following relations obtained from the
quadrupole symmetry of the magnetic field:

It
B

LB t)oo]
2
(AF) = —<A% (0—12 - Tiz)sin29> -0,
(AG) = zW% [(% %)+(O%—Tiz)cos 29]>
=2 <A "22;072> = 2(AY). 22)

Using Eq. (22), we can rewrite Eq. (21) as
1
[fp (LN X + USHX o — (R X g0)

— (S MY+ 2RI Y g+ (RYXy—2 (KwP,w)X]
0

= [2¢ (N Y + USHYor = ((R))Y 00)

+{SNX; = 2URNX g + ((RN)Xp] , =0,  (23)
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Then, we obtain

1
3 (DX + (X = (R)X ),
= 2(kyPy) X = [20 ()Y s + (SN Y a1
— RNV 40)] = (S My X+ (R X g = 0, (24)

where we used the incompressible condition of the flute
perturbations, V- & = X, + Yy = 0. Using the same condi-
tion, we have an equation for X as

1
ﬁ (UoNX 1 + USNX o1 — <<R>>X,09),ae

= 2{ky Py X0 + [20 ()X s + (SN X gar
— (R X )|, = (SN X o + ((RY.y X = 0.
(25)
When we consider flute perturbations as
X, 0,1) = X()e' ™ 1 cc.,
we finally obtain a radial eigenmode equation for flute

modes,

d dx| m? d

+ m*(R)) = 2m* (Pxy)) = 0,
U = w*({p)) — mw{(S)) — m*((R)),

(ma(sy

(26)
where S and R for a Maxwellian plasma are given by

S = pQRuwExp + Ws),

R = —pwpxp(WExp + Wsi),
wexp = 0D/,
w.; = (M;/ep)OP ;| 0,

where wgyxp and w,; are the E X B drift frequency and ion
diamagnetic drift frequency, respectively. Note that the
eigenmode in Eq.(26) is derived without an eikonal ap-
proximation and thus is applicable to a flute mode with an
arbitrary m. It can describe interchange, E X B rotational,
and Kelvin-Helmholtz modes driven by the shear effect of
E x B plasma rotation [10]. Here, we mention that the den-
sity and pressure are not symmetric with respect to z, such
as P(—z) # P(z). In this case, the sin26 and cos 26 terms
arising from the quadrupole magnetic field do not disap-
pear in (AE), (AF), and (AG) in Eq. (22). Also, we obtain
coupled mode equations as a radial eigenmode equation,
where mode m is coupled with m + 2 modes.

Finally, we note the relationship between Eq. (26) and
familiar Rosenbluth-Simon equation [11], which is derived
for a straight magnetic field configuration. If we intro-
duce ¢ = X/rB to replace X, from Eq. (26), we obtain the
Rosenbluth-Simon equation as

1d
rdr

dp

3
" U
(r dr

)+ (1 -m*)Ugp
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dr

27)

I oo,
dr

Multiplying ¢* by Eq. (27) and integrating over r, we ob-
tain a quadratic equation in w as

Agw? — Ajw + Ay =0, (28)
with
do)> m*-1
no= [ dr[r3<<p>>('d—‘f + w)
A,
T4 (7 ]
do> m* -1
A = f drr3<<s>>(]d—‘f +’”T|so|2),
de> m*-1
= [arl-rean(| S + et
d(2p
+r2ﬂl<p|2]. (29)
dr

Here, if we assume that p, S, and R are axially uniform,
from A% — 44,A, > 0, which is the stability condition of
Eq. (28), we obtain

1072>£d<2PK¢,> _Zd_p
47" T p  dr p dr
rdp -
+ (—;5) (wéxg + wExB(U*i)

+ (Awpxp)® + dwpxpdw., (30)
where dwpxp, Aw,; and the average are defined as follows:

AwExp = WExB — WExB, AW = Wi — Wy,

_ de|* m? -1
A:fdrrSp b I R L
dr r
dol> m*-1
3 2
/fdrrp(‘a‘ t 3 lel”]) s
de? m?-1

i farmeial [

The first, second, and third terms of the right-hand side
of Eq. (30) denote the interchange drive, E X B rotational
drive, and Kelvin-Helmbholtz drive, respectively. The left-
hand side of Eq. (30) expresses the ion FLR stabilization.

Iso|2) .

€1V

72

3. Stability Analysis for Cylindrical
Plasma Model

In this section, we study the stability of a quadrupole-
anchored tandem mirror plasma using a cylindrical plasma
model for simplicity. Here, we use the long-thin approx-
imation for a mirror plasma. In this approximation, the
normal curvature k, does not depend on . For the density
p and pressure P, we assume
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il 2

Pz, |PR) vo)’

and we also assume that wgxp is a function of z only. If we
replace y with X, defined by

x = {2 exp(=¢/2)X,
the function y obeys the following Whittaker equation:
d? 1 1 —m?
X (‘z Yot )X -0
W ((p)) — 2m* (Pr, )

2[w@) = meo ({S)) = ((RY)]
where () = (@ P)). (R)) = ((R@.P)). ¢ =
Y/ and r§B0/2. rp is the plasma radius of the
central-cell plasma, and By is the magnetic field strength

of the central cell. If we solve the Whittaker equation un-
der the boundary conditions,

x(=0) = finite, and y(y =y.)=0,

(32)

(33)

g + (34)

(35)

yL=r{Bo/2
(36)
where r, is the central-cell limiter or wall radius. If we

introduce 7 = 2u — 1 in place of 7, the eigenfunction satis-
fying the boundary condition is given by

X(©) = ™V exp(=¢ 12)MI(m — m)/2,1 +m, (],

(37)
where M(a, b, 7) is the Kummer function defined by
a ala+1) 72
M(a,b,z) =1+ — —
(@b =1+ et v 2
ala + 1)(a+3)§ ...... (38)

b(b+ 1)(b+3)3!
The eigenvalue 7 is determined from M[(m — n)/2,1 +
m, {p] = 0 with g, = (rL/rp)2 and is expressed as

w2 — m(l _ l) «.5 (2wE><B + w*l)))w
n «p»
+ m2 (1 _ l) {(pwEexp (WExB+W+i))) B _2 <PK¢/>
n «on n «oN
- (39)

By solving the above quadratic equation in w, we can
discuss the stability of a tandem mirror. When the ra-
dius r is infinite, the value 7 is reduced to n = m + 2n
..... ), where n is the radial mode number. When
rL = oo, for the m = 1 and n = 0 modes, we obtain from
Eq.(39)

W = (Pry) [(P))-
This equation describes the familiar flute interchange sta-
bility. The plasma is unstable when <}_’K¢> is negative.
Negative k, corresponds to a so-called bad curvature con-
figuration. On the other hand, when ry is finite, the second
and third terms in Eq. (39) remain and contribute to the sta-
bility as the E X B rotational drive and FLR stabilization,
respectively.

(40)
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4. Stability Analysis of GAMMA 10
Tandem Mirror Plasma

In this section, we discuss the flute-mode stability of
GAMMA 10 tandem mirror plasmas based on Eq.(39).
Figure 1 shows the right-hand side of the standard mag-
netic field B(z) in units of tesla and normal curvature (z)
for the field line of » = 5cm and 6 = n/4 at the central-cell
midplane (z = 0), where B(—z) = B(z) and ky(—2) = ky(2).
The GAMMA 10 contains five mirror cells: the central
cell for ion heating and bulk-plasma production, two an-
chor cells for MHD stabilization, and two plug/barrier
cells for ion-plugging potential formation by strong elec-
tron cyclotron resonance heating. The contribution to the
plasma stability of the transition-region plasma is consid-
ered to be very small, as the flux tube of the transition re-
gion is strongly noncircular, and thus the density is low.
Here, we assume the following axial profile for pressure

P(Z) = pL + P”,
2
Z \? z
Po+ P 1—(—) HERE
o 2.8 }exp (Lc)
0<|z <28
Py, 28<|71<4.4
5 -5.2\’ z-52)\2
PR)={py+Px|1- 222 _
o155 oo (527 |
44 <7 <6.0
Py, 6.0<1z<7.6
z—8.8 2
P()+PB 1- 12 , 7.6 < |Z| <10.0

(41)

where P is a uniform cold-plasma component, and Pc,
P4, and Py are the peak pressures of mirror-trapped hot
components in the central, anchor, and plug/barrier cells,

3¢ B(2) ﬂ\ \

Central Anchor / Plug/Barrier| |

2F  cell Cell \ocen )|

/

| =
.
Ot 1 1 I 1 I L 1 1 I I ]
/\ /\ //\ T~

0 \ f
WA
Ky (2) \

1 1 1 1 1 1 1 1 { 1 1

0 10

Fig. 1 Standard magnetic field B(z) in units of tesla and normal
curvature «y(z) for field line of r = Scm and 6 = /4 at
central-cell midplane (z = 0), where B(—z) = B(z) and
Ky(=2) = Ky (2).
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respectively. Lc and L denote the axial extent of the hot
components in the central and anchor cells, respectively.
If we neglect the contribution from the transition region,
<I3K¢> is approximately expressed as

<pk‘”> ~ <PK‘”>A + <pKW>C + <PK'/’>B ’

where <PK¢>A, <P/<,,,>C, and <PK¢>B denote 1ntegrat19n in
the anchor, central, and plug/barrier cells, respectively.
The above equation is rewritten as

p B, Pry Bc\
<PK¢> = ﬂAO Ba <PA P, >A - Bec (B_A) '(Kl/,)C'
Bc 2 Pky Bg 2 Px,
—Bcu (B_A) <P_c>c —PBB (B_A) <PB+P0 >B
- By Py
" 2u0 <PA + PO>A (Ba = fePec = fuBen — foPp),

(42)

where Ba, Bc, and Bg are the midplane magnetic field
strengths at the anchor, central, and plug/barrier cells, re-
spectively, and B expresses the peak beta value of each cell
(for the central cell, the beta value is divided into the cold-
component beta and hot-component beta).

Ba = 2p0(Pp + Po) _ 2uoPo
A Bi s CC B(Z: 5
o = 2uoPc _ 2p0(Ps + Po)
BZ By
5 _
_ BC PKw
Je= (BA) |<KW>C|/<PA + P0>A’
BC 2 -K PK,p
fH =\ 75 — s
Ba c/c Pa + Py A

pKw
PA+P()

pKw
PB+P0

(43)

),

Figures 2 (a), (b), and (c) show the values of fc, fg,
and fy in Eq.(42): fc as a function of L, in Fig.2 (a),
fs as a function of La in Fig.2(b), and fy as a function
of L¢ for two different values of L, in Fig.2(c). These
figures show that fy is much smaller than fc. This is
because the bad-curvature region of the central cell is lo-
calized near the mirror throat region, whereas the mirror-

trapped hot-component is under low pressure near the mir-
ror throat region. As the central-cell peak beta is given by

Bc = 2uo(Pc + Po)/ B, when we use Bc, fcBec + fufcn is
expressed as

feBece + fuBen = fobce.

s PO PC
= + .
fC fC PC + P() fHPC + P()

(44)

Next, we estimate ({(0)) in Eq. (39).

Mil’l
>= f A

p

=%
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0 1 1 |
0 1 ! . 0.2 0.4 06 08 1
0.2 0.4 0.6 0.8 1 La (m) 0 I 1 é 1 é
La (m) LC (m)

(a) (b) (c)

Fig.2 fc, fs, and fi in Eq. (42). (2): fc as a function of La, (b): f3 as a function of La, (¢): fy as a function of L¢ for two different values
of L. Itis shown that fi < fc.

1
=~ M,-nCL—gj 1+ ( ) 2LA Ia = S(ZWEXB + W),
B Ba) Lc nc dz 5
2
+( ) 2Lp g + (E) 2Lt n1r {(Pwexp(WExp+Wsi))) f B BwEXB(wEXBer*l)
By) Lc nc \Bw) Lc nc DY) - OMincLc
L 2L B
~ Minc §[1+(B) LAnA 1 ¢
BC A ¢ e X —WExB(WExB + W),
0
2LB I’lB 45
+ BB L ne #5) which is reasonable because the £ B drift and ion diamag-
netic drift frequencies in the central cell are more dominant
where the contribution from the transition cell is neglected as compared to those in the other cells in experiments. In
because (Brr/Bc)> > 5 and ntg < nc. If we use the pa- this case, Eq. (39) is approximated as
rameters (Ba/Bc)? = 2.28, (Bg/Bc)? = 1.50, Lc = 5.6 m,
L =1.6m, and Lg = 2.4 m, we obtain w? — m(l _ l) l(sz 5+ W)W
X *1
Lc
«py =~ Minc— l+025—+057 ] 1\ 1 m?
B +m? (1 - 5) SWEXB((UEXB + wy) — TFK/IHD =0,
L
= 6Minc— , (46) (48)
B

where 0 =~ 1.3, as ng << nc = ny, is usually obtained exper- From the stability condition, we obtain

imentally. Then, the interchange drive is expressed as 1, n@-D+1
. had = TWEXB(‘UEXB + W)
(P "
I 1%/11—113 = ’752 2
«on - (17——1)2F MHD" 49)
/2u0 P Ky
= SMincLe/B2 \ Pa + P Here, we discuss the ion FLR stabilization of the E X B
y (lﬁ _ ¢ ~ foB) A 7) rotational mode, which is observed in GAMMA 10 exper-
A = JcBe = faPe), iments [2, 12]. We then assume that the interchange mode
where the parameters Bc = 4.45kG, By = 6.73kG, and is marginally stable; that is, FI%/[HD = 0. In this case, from
M; = 1.67x 107 kg are used. We also use the following Eq. (49), the ion FLR stabilization condition for the E X B
approximation in the second and third terms of Eq. (39): rotational mode is given by
%D s + w00) Wi 77(5 D+1 n-1
{PQLwExp + W) BB ! >2 I+ 41+ ———].
= WExB -1 neée—-1+1
«pn 6M;ncLc 50)
2
B¢
MincLc Qwpxs + Wsi) When (rL/rp)2 = 6.0, we have n = 1.125 for the m =
B 1 mode from Eq.(34) with the boundary condition in
~ SMincLc Eq. (36). If we assume 6 = 1.3, we obtain w.;/wgxp > 43.8
Bé as the FLR stabilization condition of the E X B rotational
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mode. We now discuss the total stability condition of the
plasma. With the use of Eq. (47), Eq. (49) is rewritten as

Ba = f&Bc + faBB
(n="DIn6-1) +1]
+
Ané?
=1,
4Aps2 "

WEXB(WEXB + Wy)

(51

where A is given by

B2 /210

— _ PK‘#
" MincLo/BYYY XA T

Pa + Py

> . (52)
A

In the stability condition of Eq. (51), the first and second
terms of the right-hand side are due to the interchange
modes, the third term expresses the E X B rotational-mode
drive, and final term denotes the ion FLR stabilization. We
first estimate the value of £ related to the flute interchange
modes. The experimental value f: = 0.25 reported in
Ref. [2] can be explained theoretically. From Fig.2, we
obtain fc = 2.5 for Ly = 0.4 and fy = 0.054 for L, = 0.4
and Lc = 2.0. Then, using these parameters and Eq. (44),
we obtain f* = 0.24~0.26 if we assume Pc/Py = 11~12.
This pressure ratio Pc/ Py has been realized in the ion cy-
clotron range of frequency (ICRF) start-up operation mode
of GAMMA 10 experiments [13], and the theoretical value
of f& is comparable to the experimental value f: = 0.25.
For numerical calculations, we estimate the E X B drift and
ion diamagnetic drift frequencies as

D 2dy [V]

g == 53
T T (ml BT &9
= MiPs__ 2TuleV] 50

oo r2[m] B [T]

In this case, with the use of Egs.(52), (53), and (54),
Eq. (51) is rewritten as

n—1[n6-1)+1]

Ba > [P+ fubn +

B2
S—A
n 2ﬂOXA
y MincLc ( 29 2(rp)2 (’p)2+ Ty;
Bé VSBC L n Dy
— 1?2 MncLe (2T,
(n 2) n(ZIC(ZJ_J’ (55)
A Be B
4o —xa

249

If we again use the parameters Bc = 4.45kG, Bj
6.73kG, M; = 1.67x107*" kg, Lc = 5.6 m, and rp =0.1m,
Eq. (55) is reduced to

Ba = fEBc + faBB
+0.53x 10™

ol

w@—D[n@E -1 +1]
noX A

nlm]
i o

.
p

rmwl
®o[V]
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20 (N — 1)>n [m’3]

noxa  ry[m]

-0.13x10” T2,[eV]. (56)

Here, we consider the case in which the plug/barrier
plasma is negligible, and assume fg 0. In this
case, as the central-cell beta is approximated by B¢
2uoncT 1i/BE, Eq. (56) is rewritten as

Ba

> 20x 07T,
nc

~
~

4"

p

1
+0.53 x 107¢, — &}

Ty,
D

1+

1
-0.13x 10%C, T2,
12
p

4
L

(57)

_ =Dy -1 +1] (n =1

nox A nox A
measured by m™>, T; by eV, and @, by V, respectively.
Calculating Eq. (57), we estimate the anchor-cell beta Sa
required for MHD stability of the plasma. In estimating
Eq. (56), we assume 6 = 1.3 and f& = 0.25. The typical
value of the central-cell potential @, in the ICRF start-up
operation is @y = 0.5-1.0kV. From the numerical cal-
culation in Ref. [1], we see that y4 is typically estimated
to be 3 < ya < 11, which depends on the axial pressure
profile of the anchor cell. The central-cell limiter radius
is r, = 18cm. When the plasma radius (in pressure) is
7, = 6.0cm, (rL/rp)2 = 9.0, and as the eigenvalue of the
radial flute-mode equation (Eq. (34)), we have n = 1.015
and 2.058 for the m = 1 and 2 modes, respectively. For
rp, = 7.35cm, (r./rp)* = 6.0, and we have = 1.125 for
the m = 1 and n = 2.350 for the m = 2 mode.

We first discuss the case of r, = 6.0cm. Figure 3
shows the stability boundary on B4 /nc of the m = 1 mode
as a function of T,; in keV for @y = 1.0kV and yo = 5.0
(blue line) and 10.0 (red line), where the dashed line indi-
cates the interchange-mode stability boundary Sa = f3Bc.
We see that the anchor beta for stability increases due
to the E X B rotational-mode drive as compared with the

with C;

and nc is

0.06 v
B, (170=I.0k\/
nel m] 2= 50
0.04 ¢ stable 4
Z,=10.0
0.02 | o
T B=f*
BA5, unstable
0 . . . A
0 2 4 T, [keV] 6 8 10

Fig. 3 Stability boundary on 84 of m = 1 mode as a function of
T,; for @y = 1.0kV and y5 = 5.0 (blue) and 10.0 (red),
where 7, = 6¢cm, . = 18cm, 6 = 1.3, and f& = 0.25 are

assumed.
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0.06 :
s, @=0.5kV
n-[10m=]
=35.0 ”
0.04 stable Za Z
= 7,=100
0.02}
/,/’//],,:./(’.*ﬂ(. unstable
0 L 1 L
0 2 4 7, [keV] 6 8 10

Fig. 4 Stability boundary on 84 of m = 1 mode as a function of
T.; for @y = 0.5kV and y, = 5.0 (blue) and 10.0 (red),
where other parameters are same as those in Fig. 3.
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n-[107m=)
0.015}
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0.01}
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0.005}

BBy o omm"

O o unstable

TL,[I\'eV]O’6
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Fig. 5 Stability boundary on 4 of m = 2 mode as a function of
T, for @y = 1.0kV and y» = 5.0 (blue) and 10.0 (red),
where other parameters are the same as those in Fig. 3.

interchange-mode stability boundary. This anchor-beta in-
crease for stability is consistent with GAMMA 10 exper-
iments [2, 14]. We also see that in this case, the ion FLR
stabilizing effect is negligibly small (7,; = 10keV, as the
term is proportional to Tfi). Figure 4 shows the stabil-
ity boundary on Ba/nc of the m = 1 mode as a function
of T,; in keV for @y, = 0.5kV, where the other parame-
ters are the same as those in Fig.3. The anchor-beta in-
crease for stability due to the E X B rotational-mode drive
is smaller than that in Fig. 3. Figure 5 shows the stability
boundary on B4 /nc of the m = 2 mode as a function of
T,; for @y = 1.0kV, and Fig. 6 shows the stability bound-
ary on S5 /nc of the m = 2 mode as a function of T'; for
@y = 0.5kV, where the other parameters are the same as
those in Fig. 3. For both cases, though the anchor-beta in-
crease for stability due to the E X B rotational-mode drive
is larger than that in Figs. 3 and 4, the plasma can be com-
pletely stabilized by the ion FLR effect when the ion tem-
perature T';; increases. Ion FLR stabilization is more ef-
fective for smaller @y. Therefore, we see that when the
plasma radius is small, the m = 1 is less stable than m = 2
mode.

We next discuss the case of 7, = 7.35cm. Figure 7
shows the stability boundary on 84 /nc of the m = 1 mode
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0.006
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stable

0.004

0.002

08 1

02

Fig. 6 Stability boundary on S5 of m = 2 mode as a function of
T,; for @y = 0.5kV and y5 = 5.0 (blue) and 10.0 (red),
where other parameters are the same as those in Fig. 3.
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Fi

=

g.7 Stability boundary on s of m = 1 mode as a function of
T, for @y = 1.0kV and y, = 5.0 (blue) and 10.0 (red),
where r, = 7.35cm, rp. = 18cm, § = 1.3, and f& =025
are assumed.
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0.011
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unstable
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Fig. 8 Stability boundary on 84 of m = 2 mode as a function of
T, for @y = 1.0kV and y, = 5.0 (blue) and 10.0 (red),
where other parameters are same as those in Fig. 7.

as a function of T,; in keV for @y = 1.0kV and y5, = 5.0
(blue line) and 10.0 (red line), where the dashed line indi-
cates the interchange-mode stability boundary Sa = fBc.
In this case, we find that the ion FLR stabilizing term be-
comes effective when the ion temperature 7,; increases
compared with Fig. 3. Figure 8 shows the stability bound-
ary on s /nc of the m = 2 mode as a function of T',; for
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@y = 1.0kV, where the other parameters are the same as
those in Fig. 7. Figure 8 is similar to Fig.5 for m = 2 at
rp = 6.0cm. This is because n = 2.350 for the m = 2
mode at r, = 7.35cm is relatively close to 7 = 2.058 for
the m = 2 mode at r, = 6.0 cm. Nonetheless, we see from
these figures that the m = 2 modes are more strongly sta-
bilized by the ion FLR effect than the m = 1 modes.
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Appendix.

In this Appendix, we derive the relations for a vac-
uum quadrupole magnetic field. The vacuum quadrupole
magnetic field in the paraxial approximation is expressed

by
= (x _ (xozr(z)) ,
y]  \yor(2)
2 2
Xo = _lﬁ cos(d), yo= _l/’ sin(6), (A.1)
Bo Bo
with 0(-z) = —7(2) for quadrupole symmetry. For the
above magnetic field line, we obtain the following rela-
tions:
—xy =, v=xg=| 27
T Ty T ket )
u v
u =X = -, 1)) =X = —,
v R 2 W O 20
Ug=Xyg= %ﬁ’ Vo= Xgp = —2u,

Ugyg = X yoo = —U, Vgg = Xgog = V.

If we define E, F, and G by

E=u-u=(V0-V)/B,
F=u-v=—-(Vy- V0)/B,

008-9

G=v-v=(Vy V)P,

we also have the following relations:

(1]

(2]

(3]
(4]

(3]
(6]
(7]
(8]
(9]
[10]
[11]

[12]
[13]

[14]

u-ug=F/2y, v-uyg=G/2,
u-vyg=-2yE, v-vy=-2¢F,
u-ugg=-E, v-ugp=-F,
u-vg=-F v-vg=-G,

wy - ug=~F/QY)°, vy ug=G/Qp),
uy-vg=E, vy,-vyg=-F.
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