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We study the flute-mode stability of quadrupole-anchored tandem mirror plasmas. The present analysis
is based on Newcomb’s Lagrangian density with an assumption of small Larmor radius of ions for paraxial
approximation. A radial eigenmode equation for flute perturbations is derived without an eikonal approximation
in flux coordinates, where effects of E × B plasma rotation due to an ambipolar electric field are considered. The
obtained eigenmode equation is applicable to a mode with an arbitrary azimuthal mode number and can describe
interchange, E × B rotational, and Kelvin-Helmholtz modes driven by the shear effect of E × B plasma rotation.
A quadratic dispersion equation in perturbation frequency ω is derived based on a simplified cylindrical plasma
model and is used to discuss the flute stability of quadrupole-anchored GAMMA 10 tandem mirror plasmas,
where the anchor beta required for plasma stability is calculated for the m = 1 and 2 modes for different values
of central-cell ambipolar potential.
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1. Introduction
The magnetohydrodymamic (MHD) stability of

plasma is very important for achieving a high-beta plasma
in tandem mirror fusion research. In a tandem mirror with
a minimum-B anchor for MHD stability, such as GAMMA
10, the beta value attainable in a central cell depends
strongly on the beta value in an anchor cell and magnitude
of an ambipolar electric field [1, 2].

Many studies of MHD stability on a tandem mirror
plasma have been reported. However, they have con-
centrated mainly on studying high-m ballooning modes
of a quadrupole-anchored tandem mirror plasma with an
eikonal approximation [3–5], and low-m flute and balloon-
ing modes of an axisymmetric tandem mirror plasma [6–
8], where m is an azimuthal mode number. Presently
in tandem mirror experiments, the MHD stability of a
quadrupole-anchored tandem mirror plasma against low-m
flute perturbations is the most important concern, because
the attained beta values are still low.

In this paper, we study the flute-mode stability of a
quadrupole-anchored tandem mirror plasma. The analysis
is based on a Lagrangian density developed by Newcomb
[9], which assumes the paraxial approximation and small
Larmor radius of ions. Starting from Newcomb’s La-
grangian density, we derive a radial eigenmode equation
for flute-mode perturbations that includes the effects of
E × B plasma rotation due to an ambipolar electric field.
The obtained eigenmode equation is applicable to a flute
mode with an arbitrary m and can describe interchange,
E × B rotational, and Kelvin-Helmholtz modes driven by

the shear effect of E × B plasma rotation [10] and ion finite
Larmor radius (FLR) stabilizing effect.

In the following section, we derive a radial eigen-
mode equation for low-frequency flute-mode perturba-
tions in a quadrupole-anchored tandem mirror plasma from
Newcomb’s Lagrangian density. In Sec. 3, we derive a
quadratic dispersion equation in the perturbation frequency
ω from the radial eigenmode equation obtained in Sec. 2,
assuming a cylindrical plasma model. In Sec. 4, we discuss
the flute-mode stability of quadrupole-anchored GAMMA
10 plasmas based on the quadratic dispersion equation in
ω, especially the interchange modes, E×B rotational mode,
and ion FLR stabilizing effect.

2. Derivation of Flute Mode Equation
In this section, we study the flute-mode stability

of a quadrupole-anchored tandem mirror plasma such as
GAMMA 10. The starting point is Newcomb’s Lagrangian
density [9, 10] in a paraxial approximation, which is given
by

L =
1
2
(
ρx,t ·x,t + S x,t ·x,θ − Rx,θ ·x,θ − Qx,z ·x,z) ,

(1)

with

S = 2ρΦ,ψ − (HB2),ψ/2B,

R = −ρΦ2
,ψ + (HB2),ψΦ,ψ/2B − B,ψK,ψ/B,

H = −8πB
∑

(M2/q)
∫

fμdμdε
/ ∣∣∣v||∣∣∣ ,
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K = 2πB3
∑

(M3/q2)
∫

fμ2dμdε
/ ∣∣∣v||∣∣∣ ,

Q = B2 + P⊥ − P||,

where x = (x, y) is the position of a magnetic field line
expressed as a function of flux coordinates (ψ, θ, z), where
z is the coordinate along the field line in the paraxial ap-
proximation. Φ, f , ρ, M, q, P⊥ (P||), and ε are the am-
bipolar potential, equilibrium distribution function, equi-
librium mass density, mass, charge, perpendicular (paral-
lel) plasma pressure, and particle energy per unit mass, re-
spectively, given by

ε = μB + v2
||/2 + qΦ/M,

and μ is the magnetic moment per unit mass, given by

μ = v2
⊥/2B,

The subscripts of (ψ, θ, z) and time t accompanied by a
comma indicate the partial derivative; that is, A,t = ∂A/∂t
and A,z = ∂A/∂z. In the flux coordinates, the equilibrium
magnetic field B is expressed as

B = Bb = ∇ψ × ∇θ,
where b = B/|B|.

We now introduce an action integral for the La-
grangian density L under the constraint that perturbations
of magnetic field lines are incompressible.

I =
∫ t2

t1

dt
∫

dψdθdz
B

[L + λ(x,ψ · x∗,θ − 1)], (2)

where λ is an uncertain coefficient, and x∗ = x × b. We
now try to find the optimal state of x in the action integral
I. For the deformation of the magnetic field line from x
to x + δx with δx = 0 at t1 and t2, from the stationary
condition δI = I(x + δx) − I(x) = 0, we obtain a set of
Euler-Lagrange equations,

x,ψ · F + λ,ψ = 0, (3)

x,θ · F + λ,θ = 0, (4)

with

F = ρx,tt − B
[Q

B
x,z

]
,z
+ S x,tθ − Rx,θθ. (5)

If we linearize Eqs. (3) and (4) with respect to ξ = δx, we
obtain

ρx,ψ · ξ,tt − Bξ,ψ ·
[Q

B
x,z

]
,z
− Bx,ψ ·

[Q
B
ξ,z

]
,z

+S x,ψ ·ξ,tθ−Rx,ψ ·ξ,θθ−Rξ,ψ ·x,θθ+δλ,ψ=0, (6)

ρx,θ · ξ,tt − Bξ,θ ·
[Q

B
x,z

]
,z
− Bxθ ·

[Q
B
ξ,z

]
,z

+S x,θ · ξ,tθ−Rx,θ · ξ,θθ−Rξ,θ · x,θθ+δλ,θ=0. (7)

When we introduce ν, defined by

ν = δλ − Bξ ·
[Q

B
x,z

]
,z
, (8)

we obtain

ν,ψ = δλ,ψ − Bξ,ψ ·
[Q

B
x,z

]
,z

− ξ ·
[
B
(Q

B

)
,z

x,ψz + Q,ψκ + Qκ,ψ

]
, (9)

ν,θ = δλ,θ − Bξ,θ ·
[Q

B
x,z

]
,z

− ξ ·
[
B
(Q

B

)
,z

x,θz + Qκ,θ

]
, (10)

where we used κ = x,zz, κ being the curvature vector, and
assumed that [B(Q/B)z],ψ, = 0 and Q,θ = 0. An external
magnetic field Bv in vacuum is a function of z only in the
paraxial approximation. Thus, in this case, from the axial
equilibrium equation in the z direction, we obtain[

B
(Q

B

)
,z

]
,ψ

=

(
B2

2
+ P⊥

)
,zψ

=

[
B2
v (z)
2

]
,zψ

= 0.

Substituting Eqs. (9) and (10) in (7) and (8), we obtain

ρx,ψ · ξ,tt + Q,ψξ · κ − B
[Q

B
(x,ψ · ξ,z − x,ψz · ξ)

]
,z

+ S x,ψ · ξ,tθ − Rx,ψ · ξ,θθ + Rξ,ψ · x,θθ + ν,ψ = 0,

(11)

ρx,θ · ξ,tt − B
[Q

B
(x,θ · ξ,z − x,θz · ξ)

]
,z
+ S x,θ · ξ,tθ

− Rx,θ · ξ,θθ − Rξ,θ · x,θθ + ν,θ = 0. (12)

If we define u = xψ and u = x,θ, Eqs. (11) and (12) can be
rewritten as

ρu ·
(
ξ,tt + S ξ,tθ − Rξ,θθ

)
− Rξ,ψ · u,θ + Q,ψξ · κ

− B
[Q

B
(u · ξ,z − u,z · ξ)

]
,z
+ ν,ψ = 0, (13)

ρu ·
(
ξ,tt + S ξ,tθ − Rξ,θθ

)
− Rξ,ψ · u,θ

− B
[Q

B
(u · ξ,z − u,z · ξ)

]
,z
+ ν,θ = 0, (14)

If we here express the flute perturbation ξ, as

ξ = Xu + Yu (15)

for X and Y we obtain

E(ρX,tt + S X,θt − RX,θθ) + F(ρY,tt + S Y,θt − RY,θθ)

+
F
2ψ

(
S X,t − 2RX,θ

) − 2ψE
(
S Y,t − 2RY,θ

)
+ 2FRY + 2ψERX,ψ + 2ψFRY,ψ − 2κψP,ψX

− B
[Q

B
(EX,z + FY,z)

]
,z
+ i

Q
B

Y,z + ν,ψ = 0, (16)

F(ρX,tt + S X,θt − RX,θθ) +G(ρY,tt + S Y,θt − RY,θθ)

+
G
2ψ

(
S X,t − 2RX,θ

) − 2ψF
(
S Y,t − 2RY,θ

)
+ 2FRY+ 2ψERX,θ + 2ψFRY,θ +

(
G− 4ψ2E

)
RY

− B
[Q

B
(FX,z+GY,z)

]
,z
−B

(
i

Q
B2

X
)
,z
+ν,θ=0, (17)
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where κψ and i are normal components of the curvature and
parallel current, respectively, defined by κψ = u · κ and

i = b · (∇ × b) = B
(
u,z · u − u · u,z) . (18)

In the derivation of Eq. (16), we used the following rela-
tions:

Q,ψ =
(
B2 + P⊥ − P||

)
,ψ
= −2P⊥,ψ +

(
P⊥ − P||

)
,ψ

= −2P,ψ, (19)

B
(
i

Q
B2

)
,z
= 2κθP,ψ, (20)

where κθ = u · κ is a geodesic component of the curvature.
Here, we assume flute-mode perturbations, that is, X,z =

Y,z = 0. We also assume that physical quantities such as
density, pressure, and electrostatic potential are symmetric
with respect to the central-cell midplane, so ρ(−z) = ρ(z)
and P(−z) = P(z). In this case, if we flute-average Eqs. (16)
and (17) and then subtract the ψ-derivative of Eq. (17) from
θ-derivative of Eq. (16), we obtain(

〈ρE〉X,tt + 〈S E〉X,θt − 〈RE〉X,θθ − 2ψ〈S E〉Y,t
+ 4ψ〈RE〉Y,θ + 2ψ〈RE〉X,ψ − 2

〈
κψP,ψ

〉
X
)
,θ

−
(
〈ρG〉Y,tt + 〈S G〉Y,θt − 〈RG〉Y,θθ + 1

2ψ
〈S G〉X,t

− 1
ψ
〈RG〉X,θ + 2ψ〈RE〉X,θ

)
,ψ

= 0, (21)

where flute averaging is defined by

〈A〉 =
∫

A
dz
B
,

and we used the following relations obtained from the
quadrupole symmetry of the magnetic field:

〈AE〉 = 1
2ψ

〈
A

B0

2B2

[(
1
σ2
+

1
τ2

)
−
(

1
σ2
− 1
τ2

)
cos 2θ

]〉

=
1

2ψ

〈
A
σ2 + τ2

2B0

〉
=

1
2ψ
〈〈A〉〉,

〈AF〉 = −
〈
A

B0

2B2

(
1
σ2
− 1
τ2

)
sin 2θ

〉
= 0,

〈AG〉 = 2ψ

〈
A

B0

2B2

[(
1
σ2
+

1
τ2

)
+

(
1
σ2
− 1
τ2

)
cos 2θ

]〉

= 2ψ

〈
A
σ2 + τ2

2B0

〉
= 2ψ〈〈A〉〉. (22)

Using Eq. (22), we can rewrite Eq. (21) as[
1

2ψ
(〈〈ρ〉〉X,tt + 〈〈S 〉〉X,θt − 〈〈R〉〉X,θθ

)
− 〈〈S 〉〉Y,t+2〈〈R〉〉Y,θ+〈〈R〉〉X,ψ−2

〈
κψP,ψ

〉
X

]
,θ

− [
2ψ

(〈〈ρ〉〉Y,tt + 〈〈S 〉〉Y,θt − 〈〈R〉〉Y,θθ)
+ 〈〈S 〉〉X,t − 2〈〈R〉〉X,θ + 〈〈R〉〉X,θ

]
,ψ = 0, (23)

Then, we obtain

1
2ψ

(〈〈ρ〉〉X,tt + 〈〈S 〉〉X,θt − 〈〈R〉〉X,θθ
)
,θ

− 2
〈
κψP,ψ

〉
X,θ − [

2ψ
(〈〈ρ〉〉Y,tt + 〈〈S 〉〉Y,θt

− 〈〈R〉〉Y,θθ)],ψ−〈〈S 〉〉,ψX,t+〈〈R〉〉,ψX,θ = 0, (24)

where we used the incompressible condition of the flute
perturbations, ∇ · ξ = X,ψ + Y,θ = 0. Using the same condi-
tion, we have an equation for X as

1
2ψ

(〈〈ρ〉〉X,tt + 〈〈S 〉〉X,θt − 〈〈R〉〉X,θθ
)
,θθ

− 2
〈
κψP,ψ

〉
X,θθ +

[
2ψ

(
〈〈ρ〉〉X,ψtt + 〈〈S 〉〉X,ψθt

− 〈〈R〉〉X,ψθθ

)]
,ψ
− 〈〈S 〉〉,ψX,tθ + 〈〈R〉〉,ψX,θθ = 0.

(25)

When we consider flute perturbations as

X(ψ, θ, t) = X(ψ)ei(mθ−ωt) + c.c.,

we finally obtain a radial eigenmode equation for flute
modes,

d
dψ

[
2ψU

dX
dψ

]
− m2

2ψ
UX + X

d
dψ

(
mω〈〈S 〉〉

+ m2〈〈R〉〉 − 2m2
〈
Pκψ

〉)
= 0,

U = ω2〈〈ρ〉〉 − mω〈〈S 〉〉 − m2〈〈R〉〉, (26)

where S and R for a Maxwellian plasma are given by

S = ρ(2ωE×B + ω∗i),
R = −ρωE×B(ωE×B + ω∗i),
ωE×B = ∂Φ/∂ψ,

ω∗i = (Mi/eρ)∂P⊥i/∂ψ,

where ωE×B and ω∗i are the E × B drift frequency and ion
diamagnetic drift frequency, respectively. Note that the
eigenmode in Eq. (26) is derived without an eikonal ap-
proximation and thus is applicable to a flute mode with an
arbitrary m. It can describe interchange, E × B rotational,
and Kelvin-Helmholtz modes driven by the shear effect of
E × B plasma rotation [10]. Here, we mention that the den-
sity and pressure are not symmetric with respect to z, such
as P(−z) � P(z). In this case, the sin 2θ and cos 2θ terms
arising from the quadrupole magnetic field do not disap-
pear in 〈AE〉, 〈AF〉, and 〈AG〉 in Eq. (22). Also, we obtain
coupled mode equations as a radial eigenmode equation,
where mode m is coupled with m ± 2 modes.

Finally, we note the relationship between Eq. (26) and
familiar Rosenbluth-Simon equation [11], which is derived
for a straight magnetic field configuration. If we intro-
duce ϕ = X/rB to replace X, from Eq. (26), we obtain the
Rosenbluth-Simon equation as

1
r

d
dr

(
r3U

dϕ
dr

)
+ (1 − m2)Uϕ
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+

⎡⎢⎢⎢⎢⎢⎢⎣ω2r
d〈〈ρ〉〉

dr
− m2r

d
〈
2Pκψ

〉
dr

⎤⎥⎥⎥⎥⎥⎥⎦ϕ = 0. (27)

Multiplying ϕ∗ by Eq. (27) and integrating over r, we ob-
tain a quadratic equation in ω as

A0ω
2 − A1ω + A2 = 0, (28)

with

A0 =

∫
dr

[
r3〈〈ρ〉〉

(∣∣∣∣∣dϕdr

∣∣∣∣∣2 + m2 − 1
r2
|ϕ|2

)

− r2 d〈〈ρ〉〉
dr
|ϕ|2

]
,

A1 =

∫
drr3〈〈S 〉〉

(∣∣∣∣∣dϕdr

∣∣∣∣∣2 + m2 − 1
r2
|ϕ|2

)
,

A3 =

∫
dr

[
−r3〈〈R〉〉

(∣∣∣∣∣dϕdr

∣∣∣∣∣2 + m2 − 1
r2
|ϕ|2

)

+ r2
d
〈
2Pκψ

〉
dr

|ϕ|2
⎤⎥⎥⎥⎥⎥⎥⎦ . (29)

Here, if we assume that ρ, S , and R are axially uniform,
from A2

2 − 4A1A2 ≥ 0, which is the stability condition of
Eq. (28), we obtain

1
4
ω∗i2 ≥ r

ρ

d
〈
2Pκψ

〉
dr

⎡⎢⎢⎢⎢⎢⎢⎢⎣1 +
(
− r
ρ

dρ
dr

)⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

(
− r
ρ

dρ
dr

) (
ω2

E×B + ωE×Bω∗i
)

+ (ΔωE×B)2 + ΔωE×BΔω∗i, (30)

where ΔωE×B, Δω∗i and the average are defined as follows:

ΔωE×B = ωE×B − ωE×B, Δω∗i = ω∗i − ω∗i,
Ā =

∫
drr3ρ

(∣∣∣∣∣dϕdr

∣∣∣∣∣2 + m2 − 1
r2
|ϕ|2

)
A/∫

drr3ρ

(∣∣∣∣∣dϕdr

∣∣∣∣∣2 + m2 − 1
r2
|ϕ|2

)
,

¯̄A =
∫

drrρ|ϕ|2A

/∫
drr3ρ

(∣∣∣∣∣dϕdr

∣∣∣∣∣2 + m2 − 1
r2
|ϕ|2

)
.

(31)

The first, second, and third terms of the right-hand side
of Eq. (30) denote the interchange drive, E × B rotational
drive, and Kelvin-Helmholtz drive, respectively. The left-
hand side of Eq. (30) expresses the ion FLR stabilization.

3. Stability Analysis for Cylindrical
Plasma Model
In this section, we study the stability of a quadrupole-

anchored tandem mirror plasma using a cylindrical plasma
model for simplicity. Here, we use the long-thin approx-
imation for a mirror plasma. In this approximation, the
normal curvature κψ does not depend on ψ. For the density
ρ and pressure P, we assume

[
ρ(z, ψ)
P(z, ψ)

]
=

[
ρ̄(z)
P̄(z)

]
exp

(
− ψ
ψ0

)
, (32)

and we also assume that ωE×B is a function of z only. If we
replace χ with X, defined by

χ = ζ1/2 exp(−ζ/2)X, (33)

the function χ obeys the following Whittaker equation:

d2

dζ2
χ +

(
−1

4
+
μ

ζ
+

1 − m2

4ζ2

)
χ = 0, (34)

μ = 1 −
ω2〈〈ρ̄〉〉 − 2m2

〈
P̄κψ

〉
2
[
ω2〈〈ρ̄〉〉 − mω

〈〈
S̄
〉〉
− m2

〈〈
R̄
〉〉] , (35)

where
〈〈

S̄
〉〉
=

〈〈
S (ρ̄, P̄)

〉〉
,
〈〈

R̄
〉〉
=

〈〈
R(ρ̄, P̄)

〉〉
, ζ =

ψ/ψ0 and ψ0 = r2
p B0/2. rp is the plasma radius of the

central-cell plasma, and B0 is the magnetic field strength
of the central cell. If we solve the Whittaker equation un-
der the boundary conditions,

χ(ψ=0) = finite, and χ(ψ=ψL)=0, ψL=r2
LB0/2

(36)

where rL is the central-cell limiter or wall radius. If we
introduce η = 2μ − 1 in place of η, the eigenfunction satis-
fying the boundary condition is given by

χ(ζ) = ζ(m+1)/2 exp(−ζ/2)M[(m − η)/2, 1 + m, ζ],

(37)

where M(a, b, z) is the Kummer function defined by

M(a, b, z) = 1 +
a
b

z +
a(a + 1)
b(b + 1)

z2

2!

+
a(a + 1)(a + 3)
b(b + 1)(b + 3)

z3

3!
+ · · · · · · . (38)

The eigenvalue η is determined from M[(m − η)/2, 1 +
m, ζb] = 0 with ζb = (rL/rp)2 and is expressed as

ω2 − m

(
1 − 1

η

) 〈〈ρ̄ (2ωE×B + ω∗i)〉〉
〈〈ρ̄〉〉 ω

+ m2

(
1− 1

η

) 〈〈ρ̄ωE×B (ωE×B+ω∗i)〉〉
〈〈ρ̄〉〉 −m2

η

〈
P̄κψ

〉
〈〈ρ̄〉〉

= 0, (39)

By solving the above quadratic equation in ω, we can
discuss the stability of a tandem mirror. When the ra-
dius rL is infinite, the value η is reduced to η = m + 2n
(n = 0, 1, 2, .....), where n is the radial mode number. When
rL = ∞, for the m = 1 and n = 0 modes, we obtain from
Eq. (39)

ω2 =
〈
P̄κψ

〉 /
〈〈ρ̄〉〉. (40)

This equation describes the familiar flute interchange sta-
bility. The plasma is unstable when

〈
P̄κψ

〉
is negative.

Negative κψ corresponds to a so-called bad curvature con-
figuration. On the other hand, when rL is finite, the second
and third terms in Eq. (39) remain and contribute to the sta-
bility as the E × B rotational drive and FLR stabilization,
respectively.
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4. Stability Analysis of GAMMA 10
Tandem Mirror Plasma
In this section, we discuss the flute-mode stability of

GAMMA 10 tandem mirror plasmas based on Eq. (39).
Figure 1 shows the right-hand side of the standard mag-
netic field B(z) in units of tesla and normal curvature κψ(z)
for the field line of r = 5 cm and θ = π/4 at the central-cell
midplane (z = 0), where B(−z) = B(z) and κψ(−z) = κψ(z).
The GAMMA 10 contains five mirror cells: the central
cell for ion heating and bulk-plasma production, two an-
chor cells for MHD stabilization, and two plug/barrier
cells for ion-plugging potential formation by strong elec-
tron cyclotron resonance heating. The contribution to the
plasma stability of the transition-region plasma is consid-
ered to be very small, as the flux tube of the transition re-
gion is strongly noncircular, and thus the density is low.
Here, we assume the following axial profile for pressure
P̄(z) = P̄⊥ + P̄||,

P̄(z)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P0 + PC

[
1 −

( z
2.8

)2
]

exp

⎡⎢⎢⎢⎢⎢⎣−
(

z
LC

)2⎤⎥⎥⎥⎥⎥⎦ ,
0 ≤ |z| ≤ 2.8

P0 , 2.8 ≤ |z| ≤ 4.4

P0+PA

⎡⎢⎢⎢⎢⎢⎣1−
(

z−5.2
0.8

)2⎤⎥⎥⎥⎥⎥⎦ exp

⎡⎢⎢⎢⎢⎢⎣−
(

z − 5.2
LA

)2⎤⎥⎥⎥⎥⎥⎦ ,
4.4 ≤ |z| ≤ 6.0

P0 , 6.0 ≤ |z| ≤ 7.6

P0+PB

⎡⎢⎢⎢⎢⎢⎣1−
(

z−8.8
1.2

)2⎤⎥⎥⎥⎥⎥⎦ , 7.6 ≤ |z| ≤ 10.0

(41)

where P0 is a uniform cold-plasma component, and PC,
PA, and PB are the peak pressures of mirror-trapped hot
components in the central, anchor, and plug/barrier cells,

Fig. 1 Standard magnetic field B(z) in units of tesla and normal
curvature κψ(z) for field line of r = 5 cm and θ = π/4 at
central-cell midplane (z = 0), where B(−z) = B(z) and
κψ(−z) = κψ(z).

respectively. LC and LA denote the axial extent of the hot
components in the central and anchor cells, respectively.
If we neglect the contribution from the transition region,〈
P̄κψ

〉
is approximately expressed as

〈
P̄κψ

〉
≈

〈
P̄κψ

〉
A
+

〈
P̄κψ

〉
C
+

〈
P̄κψ

〉
B
,

where
〈
P̄κψ

〉
A

,
〈
P̄κψ

〉
C

, and
〈
P̄κψ

〉
B

denote integration in
the anchor, central, and plug/barrier cells, respectively.
The above equation is rewritten as

〈
P̄κψ

〉
=

B2
A

2μ0

⎡⎢⎢⎢⎢⎢⎣βA

〈
P̄κψ

PA + P0

〉
A

− βCC

(
BC

BA

)2 ∣∣∣∣〈κψ〉C

∣∣∣∣
− βCH

(
BC

BA

)2 ∣∣∣∣∣∣
〈

P̄κψ
PC

〉
C

∣∣∣∣∣∣−βB

(
BB

BA

)2 ∣∣∣∣∣∣
〈

P̄κψ
PB+P0

〉
B

∣∣∣∣∣∣
⎤⎥⎥⎥⎥⎥⎦

=
B2

A

2μ0

〈
P̄κψ

PA + P0

〉
A

(βA − fCβCC − fHβCH − fBβB),

(42)

where BA, BC, and BB are the midplane magnetic field
strengths at the anchor, central, and plug/barrier cells, re-
spectively, and β expresses the peak beta value of each cell
(for the central cell, the beta value is divided into the cold-
component beta and hot-component beta).

βA =
2μ0(PA + P0)

B2
A

, βCC =
2μ0P0

B2
C

,

βCH =
2μ0PC

B2
C

, βB =
2μ0(PB + P0)

B2
B

,

fC =

(
BC

BA

)2 ∣∣∣∣〈κψ〉C

∣∣∣∣
/〈

P̄κψ
PA + P0

〉
A

,

fH =

(
BC

BA

)2 ∣∣∣∣∣∣
〈

P̄κψ
PC

〉
C

∣∣∣∣∣∣
/〈

P̄κψ
PA + P0

〉
A

,

fB =

(
BB

BA

)2 ∣∣∣∣∣∣
〈

P̄κψ
PB + P0

〉
B

∣∣∣∣∣∣
/〈

P̄κψ
PA + P0

〉
A

. (43)

Figures 2 (a), (b), and (c) show the values of fC, fB,
and fH in Eq. (42): fC as a function of LA in Fig. 2 (a),
fB as a function of LA in Fig. 2 (b), and fH as a function
of LC for two different values of LA in Fig. 2 (c). These
figures show that fH is much smaller than fC. This is
because the bad-curvature region of the central cell is lo-
calized near the mirror throat region, whereas the mirror-
trapped hot-component is under low pressure near the mir-
ror throat region. As the central-cell peak beta is given by
βC = 2μ0(PC + P0)/B2

C, when we use βC, fCβCC + fHβCH is
expressed as

fCβCC + fHβCH = f ∗CβC,

f ∗C = fC
P0

PC + P0
+ fH

PC

PC + P0
. (44)

Next, we estimate 〈〈ρ̄〉〉 in Eq. (39).

〈〈ρ̄〉〉 ≈
〈
ρ̄

B

〉
=

∫
dz

Min
B2
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(a) (b) (c)

Fig. 2 fC, fB, and fH in Eq. (42). (a): fC as a function of LA, (b): fB as a function of LA, (c): fH as a function of LC for two different values
of LA. It is shown that fH � fC.

≈ MinC
LC

B2
C

⎡⎢⎢⎢⎢⎢⎣1 +
(

BC

BA

)2 2LA

LC

nA

nC

+

(
BC

BB

)2 2LB

LC

nB

nC
+

(
BC

BTR

)2 2LTR

LC

nTR

nC

⎤⎥⎥⎥⎥⎥⎦
≈ MinC

LC

B2
C

⎡⎢⎢⎢⎢⎢⎣1 +
(

BC

BA

)2 2LA

LC

nA

nC

+

(
BC

BB

)2 2LB

LC

nB

nC

⎤⎥⎥⎥⎥⎥⎦ , (45)

where the contribution from the transition cell is neglected
because (BTR/BC)2 > 5 and nTR � nC. If we use the pa-
rameters (BA/BC)2 = 2.28, (BB/BC)2 = 1.50, LC = 5.6 m,
LA = 1.6 m, and LB = 2.4 m, we obtain

〈〈ρ̄〉〉 ≈ MinC
LC

B2
C

[
1 + 0.25

nA

nC
+ 0.57

nB

nC

]

= δMinC
LC

B2
C

, (46)

where δ ≈ 1.3, as nB � nC ≈ nA is usually obtained exper-
imentally. Then, the interchange drive is expressed as

Γ2
MHD =

〈
P̄κψ

〉
〈〈ρ̄〉〉

=
B2

A/2μ0

δMinCLC/B2
C

〈
P̄κψ

PA + P0

〉
A

× (βA − f ∗CβC − fBβB), (47)

where the parameters BC = 4.45 kG, BA = 6.73 kG, and
Mi = 1.67 × 10−27 kg are used. We also use the following
approximation in the second and third terms of Eq. (39):

〈〈ρ̄(2ωE×B + ω∗i)〉〉
〈〈ρ̄〉〉 ≈

∫
dz
B
ρ̄

B
(2ωE×B + ω∗i)

δMinCLC

B2
C

≈
MinCLC

B2
C

(2ωE×B + ω∗i)

δMinCLC

B2
C

=
1
δ

(2ωE×B + ω∗i),

〈〈ρ̄ωE×B(ωE×B+ω∗i)〉〉
〈〈ρ̄〉〉 ≈

∫
dz
B
ρ̄

B
ωE×B(ωE×B+ω∗i)

δMinCLC

B2
C

≈ 1
δ
ωE×B(ωE×B + ω∗i),

which is reasonable because the E×B drift and ion diamag-
netic drift frequencies in the central cell are more dominant
as compared to those in the other cells in experiments. In
this case, Eq. (39) is approximated as

ω2 − m

(
1 − 1

η

)
1
δ

(2ωE×B + ω∗i)ω

+ m2

(
1 − 1

η

)
1
δ
ωE×B(ωE×B + ω∗i) − m2

η
Γ2

MHD = 0,

(48)

From the stability condition, we obtain

1
4
ω2
∗i ≥

η(δ − 1) + 1
η − 1

ωE×B(ωE×B + ω∗i)

− ηδ2

(η − 1)2
Γ2

MHD. (49)

Here, we discuss the ion FLR stabilization of the E × B
rotational mode, which is observed in GAMMA 10 exper-
iments [2, 12]. We then assume that the interchange mode
is marginally stable; that is, Γ2

MHD = 0. In this case, from
Eq. (49), the ion FLR stabilization condition for the E × B
rotational mode is given by

ω∗i
ωE×B

≥ 2
η(δ − 1) + 1

η − 1

⎡⎢⎢⎢⎢⎢⎢⎣1 +
√

1 +
η − 1

η(δ − 1) + 1

⎤⎥⎥⎥⎥⎥⎥⎦ .
(50)

When (rL/rp)2 = 6.0, we have η = 1.125 for the m =
1 mode from Eq. (34) with the boundary condition in
Eq. (36). If we assume δ = 1.3, we obtainω∗i/ωE×B > 43.8
as the FLR stabilization condition of the E × B rotational
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mode. We now discuss the total stability condition of the
plasma. With the use of Eq. (47), Eq. (49) is rewritten as

βA ≥ f ∗CβC + fBβB

+
(η − 1)[η(δ − 1) + 1]

Aηδ2
ωE×B(ωE×B + ω∗i)

− (η − 1)2

4Aηδ2
ω2
∗i, (51)

where A is given by

A =
B2

A/2μ0

δMinCLC/B2
C

χA, χA =

〈
P̄κψ

PA + P0

〉
A

. (52)

In the stability condition of Eq. (51), the first and second
terms of the right-hand side are due to the interchange
modes, the third term expresses the E × B rotational-mode
drive, and final term denotes the ion FLR stabilization. We
first estimate the value of f ∗C related to the flute interchange
modes. The experimental value f ∗C = 0.25 reported in
Ref. [2] can be explained theoretically. From Fig. 2, we
obtain fC = 2.5 for LA = 0.4 and fH = 0.054 for LA = 0.4
and LC = 2.0. Then, using these parameters and Eq. (44),
we obtain f ∗C = 0.24∼0.26 if we assume PC/P0 = 11∼12.
This pressure ratio PC/P0 has been realized in the ion cy-
clotron range of frequency (ICRF) start-up operation mode
of GAMMA 10 experiments [13], and the theoretical value
of f ∗C is comparable to the experimental value f ∗C = 0.25.
For numerical calculations, we estimate the E×B drift and
ion diamagnetic drift frequencies as

ωE×B = −Φ0

ψL
= − 2Φ0 [V]

r2
L [m] BC [T]

, (53)

ω∗i = −MiP⊥i

eρψ0
= − 2T⊥i [eV]

r2
p [m] BC [T]

. (54)

In this case, with the use of Eqs. (52), (53), and (54),
Eq. (51) is rewritten as

βA ≥ f ∗CβC + fBβB +
(n − 1)

[
η(δ − 1) + 1

]
ηδ

B2
A

2μ0
χA

× MinCLC

B2
C

⎛⎜⎜⎜⎜⎝ 2Φ0

r2
p BC

⎞⎟⎟⎟⎟⎠2 ( rp

rL

)2 ⎡⎢⎢⎢⎢⎢⎣
(

rp

rL

)2

+
T⊥i

Φ0

⎤⎥⎥⎥⎥⎥⎦
− (η − 1)2

4ηδ
B2

A

2μ0
χA

MinCLC

B2
C

⎛⎜⎜⎜⎜⎝ 2T⊥i

r2
p BC

⎞⎟⎟⎟⎟⎠2

, (55)

If we again use the parameters BC = 4.45 kG, BA =

6.73 kG, Mi = 1.67×10−27 kg, LC = 5.6 m, and rp = 0.1 m,
Eq. (55) is reduced to

βA ≥ f ∗CβC + fBβB

+ 0.53 × 10−29 (η − 1)
[
η(δ − 1) + 1

]
ηδχA

×
⎡⎢⎢⎢⎢⎢⎣1 +

(
rL

rp

)2 T⊥i[eV]
Φ0[V]

⎤⎥⎥⎥⎥⎥⎦ n
[
m−3

]
r4

L[m]
Φ2

0[V]

− 0.13 × 10−29 (η − 1)2

ηδχA

n
[
m−3

]
r4

p[m]
T 2
⊥i[eV]. (56)

Here, we consider the case in which the plug/barrier
plasma is negligible, and assume βB = 0. In this
case, as the central-cell beta is approximated by βC ≈
2μ0nCT⊥i/B2

C, Eq. (56) is rewritten as

βA

nC
≥ 2.0 × 10−24 f ∗CT⊥i

+ 0.53 × 10−29C1

⎡⎢⎢⎢⎢⎢⎣1 +
(

rL

rp

)2 T⊥i

Φ0

⎤⎥⎥⎥⎥⎥⎦ 1

r4
L

Φ2
0

− 0.13 × 10−29C2
1

r4
p

T 2
⊥i, (57)

with C1 =
(η − 1)[η(δ − 1) + 1]

ηδχA
, C2 =

(η − 1)2

ηδχA
and nC is

measured by m−3, T⊥i by eV, and Φ0 by V, respectively.
Calculating Eq. (57), we estimate the anchor-cell beta βA

required for MHD stability of the plasma. In estimating
Eq. (56), we assume δ = 1.3 and f ∗C = 0.25. The typical
value of the central-cell potential Φ0 in the ICRF start-up
operation is Φ0 = 0.5-1.0 kV. From the numerical cal-
culation in Ref. [1], we see that χA is typically estimated
to be 3 < χA < 11, which depends on the axial pressure
profile of the anchor cell. The central-cell limiter radius
is rL = 18 cm. When the plasma radius (in pressure) is
rp = 6.0 cm, (rL/rp)2 = 9.0, and as the eigenvalue of the
radial flute-mode equation (Eq. (34)), we have η = 1.015
and 2.058 for the m = 1 and 2 modes, respectively. For
rp = 7.35 cm, (rL/rp)2 = 6.0, and we have η = 1.125 for
the m = 1 and η = 2.350 for the m = 2 mode.

We first discuss the case of rp = 6.0 cm. Figure 3
shows the stability boundary on βA/nC of the m = 1 mode
as a function of T⊥i in keV for Φ0 = 1.0 kV and χA = 5.0
(blue line) and 10.0 (red line), where the dashed line indi-
cates the interchange-mode stability boundary βA = f ∗CβC.
We see that the anchor beta for stability increases due
to the E × B rotational-mode drive as compared with the

Fig. 3 Stability boundary on βA of m = 1 mode as a function of
T⊥i for Φ0 = 1.0 kV and χA = 5.0 (blue) and 10.0 (red),
where rp = 6 cm, rL = 18 cm, δ = 1.3, and f ∗C = 0.25 are
assumed.
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Fig. 4 Stability boundary on βA of m = 1 mode as a function of
T⊥i for Φ0 = 0.5 kV and χA = 5.0 (blue) and 10.0 (red),
where other parameters are same as those in Fig. 3.

Fig. 5 Stability boundary on βA of m = 2 mode as a function of
T⊥i for Φ0 = 1.0 kV and χA = 5.0 (blue) and 10.0 (red),
where other parameters are the same as those in Fig. 3.

interchange-mode stability boundary. This anchor-beta in-
crease for stability is consistent with GAMMA 10 exper-
iments [2, 14]. We also see that in this case, the ion FLR
stabilizing effect is negligibly small (T⊥i = 10 keV, as the
term is proportional to T 2

⊥i). Figure 4 shows the stabil-
ity boundary on βA/nC of the m = 1 mode as a function
of T⊥i in keV for Φ0 = 0.5 kV, where the other parame-
ters are the same as those in Fig. 3. The anchor-beta in-
crease for stability due to the E × B rotational-mode drive
is smaller than that in Fig. 3. Figure 5 shows the stability
boundary on βA/nC of the m = 2 mode as a function of
T⊥i for Φ0 = 1.0 kV, and Fig. 6 shows the stability bound-
ary on βA/nC of the m = 2 mode as a function of T⊥i for
Φ0 = 0.5 kV, where the other parameters are the same as
those in Fig. 3. For both cases, though the anchor-beta in-
crease for stability due to the E × B rotational-mode drive
is larger than that in Figs. 3 and 4, the plasma can be com-
pletely stabilized by the ion FLR effect when the ion tem-
perature T⊥i increases. Ion FLR stabilization is more ef-
fective for smaller Φ0. Therefore, we see that when the
plasma radius is small, the m = 1 is less stable than m = 2
mode.

We next discuss the case of rp = 7.35 cm. Figure 7
shows the stability boundary on βA/nC of the m = 1 mode

Fig. 6 Stability boundary on βA of m = 2 mode as a function of
T⊥i for Φ0 = 0.5 kV and χA = 5.0 (blue) and 10.0 (red),
where other parameters are the same as those in Fig. 3.

Fig. 7 Stability boundary on βA of m = 1 mode as a function of
T⊥i for Φ0 = 1.0 kV and χA = 5.0 (blue) and 10.0 (red),
where rp = 7.35 cm, rL = 18 cm, δ = 1.3, and f ∗C = 0.25
are assumed.

Fig. 8 Stability boundary on βA of m = 2 mode as a function of
T⊥i for Φ0 = 1.0 kV and χA = 5.0 (blue) and 10.0 (red),
where other parameters are same as those in Fig. 7.

as a function of T⊥i in keV for Φ0 = 1.0 kV and χA = 5.0
(blue line) and 10.0 (red line), where the dashed line indi-
cates the interchange-mode stability boundary βA = f ∗CβC.
In this case, we find that the ion FLR stabilizing term be-
comes effective when the ion temperature T⊥i increases
compared with Fig. 3. Figure 8 shows the stability bound-
ary on βA/nC of the m = 2 mode as a function of T⊥i for
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Φ0 = 1.0 kV, where the other parameters are the same as
those in Fig. 7. Figure 8 is similar to Fig. 5 for m = 2 at
rp = 6.0 cm. This is because η = 2.350 for the m = 2
mode at rp = 7.35 cm is relatively close to η = 2.058 for
the m = 2 mode at rp = 6.0 cm. Nonetheless, we see from
these figures that the m = 2 modes are more strongly sta-
bilized by the ion FLR effect than the m = 1 modes.

Acknowledgement
This work was partly supported by a Grant-in-Aid for

Scientific Research from the Ministry of Education, Cul-
ture, Sports, Science and Technology of Japan. The author
thanks the members of the Plasma Research Center, Uni-
versity of Tsukuba for useful discussion.

Appendix.
In this Appendix, we derive the relations for a vac-

uum quadrupole magnetic field. The vacuum quadrupole
magnetic field in the paraxial approximation is expressed
by

x =
(
x
y

)
=

(
x0σ(z)
y0τ(z)

)
,

x0 =

√
2ψ
β0

cos(θ), y0 =

√
2ψ
β0

sin(θ), (A.1)

with σ(−z) = −τ(z) for quadrupole symmetry. For the
above magnetic field line, we obtain the following rela-
tions:

u = x,ψ =
x

2ψ
, u = x,θ =

(−y0σ

x0τ

)
,

uψ = x,ψψ = − u
2ψ

, u,ψ = x,θψ =
u

2ψ
,

u,θ = x,ψθ =
u

2ψ
, u,θ = x,θθ = −2ψu,

u,θθ = x,ψθθ = −u, u,θθ = x,θθθ = −u.

If we define E, F, and G by

E = u · u = (∇θ · ∇θ)/B2,

F = u · u = −(∇ψ · ∇θ)/B2,

G = u · u = (∇ψ · ∇ψ)/B2,

we also have the following relations:

u · u,θ = F/2ψ, u · u,θ = G/2ψ,

u · u,θ = −2ψE, u · u,θ = −2ψF,

u · u,θθ = −E, u · u,θθ = −F,

u · u,θθ = −F, u · u,θθ = −G,

u,ψ · u,θ = −F/(2ψ)2, u,ψ · u,θ = G/(2ψ)2,

u,ψ · u,θ = E, u,ψ · u,θ = −F.
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