[Table of Contents]

Plasma and Fusion Research

Volume 4, 053 (2009)

Regular Articles


Trapping, Anomalous Transport, and Quasi-coherent Structures in Magnetically Confined Plasmas
Madalina VLAD and Florin SPINEANU
National Institute for Laser, Plasma and Radiation Physics, Association Euratom-MEdC, P.O.Box MG-36, Magurele, Bucharest, Romania
(Received 20 February 2009 / Accepted 27 August 2009 / Published 10 November 2009)

Abstract

Strong electrostatic turbulence in magnetically confined plasmas is characterized by trapping or eddying of particle trajectories produced by the E × B stochastic drift. Trapping is shown to produce strong effects on test particles and on test modes by causing nonstandard trajectory statistics: non-Gaussian distribution, memory effects, and coherence. Trapped trajectories form quasi-coherent structure. Trajectory trapping has strong nonlinear effects on the test modes on turbulent plasmas. We determine the growth rate of drift modes as function of the statistical characteristics of the background turbulence. We show that trapping provides the physical mechanism for the inverse cascade observed in drift turbulence and for the zonal flow generation.


Keywords

plasma turbulence, statistical approache, test-particle transport, Lagrangian method

DOI: 10.1585/pfr.4.053


References

  • [1] R.H. Kraichnan, Phys. Fluids 19, 22 (1970).
  • [2] W.D. McComb, The Physics of Fluid Turbulence (Clarendon, Oxford, 1990).
  • [3] G. Falkovich, K. Gawedzki and M. Vergassola, Rev. Mod. Phys. 73, 913 (2001).
  • [4] R. Balescu, Aspects of Anomalous Transport in Plasmas (Institute of Physics Publishing (IoP), Bristol and Philadelphia, 2005).
  • [5] M. Vlad, F. Spineanu, J.H. Misguich and R. Balescu, Phys. Rev. E 58, 7359 (1998).
  • [6] M. Vlad and F. Spineanu, Phys. Rev. E 70, 056304 (2004).
  • [7] J.A. Krommes, Phys. Reports 360, 1 (2002).
  • [8] T.H. Dupree, Phys. Fluids 9, 1773 (1966).
  • [9] T.H. Dupree, Phys. Fluids 15, 334 (1972).
  • [10] G.I. Taylor, Proc. London Math. Soc. 20, 196 (1921).
  • [11] R. Basu, T. Jessen, V. Naulin and J.J. Rasmussen, Phys. Plasmas 10, 2696 (2003).
  • [12] M. Vlad, F. Spineanu, J.H. Misguich, J.-D. Reusse, R. Balescu, K. Itoh and S.-I. Itoh, Plasma Phys. Control. Fusion 46, 1051 (2004).
  • [13] M. Vlad, F. Spineanu, J.H. Misguich and R. Balescu, Phys. Rev. E 61, 3023 (2000).
  • [14] M. Vlad, F. Spineanu, J.H. Misguich and R. Balescu, Phys. Rev. E 63, 066304 (2001).
  • [15] M. Vlad, F. Spineanu, J.H. Misguich and R. Balescu, Nuclear Fusion 42, 157 (2002).
  • [16] I. Petrisor, M. Negrea and B. Weyssow, Physica Scripta 75, 1 (2007).
  • [17] M. Vlad, F. Spineanu, J.H. Misguich and R. Balescu, Phys. Rev. E 67, 026406 (2003).
  • [18] M. Negrea, I. Petrisor and R. Balescu, Phys. Rev. E 70, 046409 (2004).
  • [19] M. Vlad, F. Spineanu and S. Benkadda, Phys. Rev. Lett. 96, 085001 (2006).
  • [20] M. Vlad, F. Spineanu and S. Benkadda, Phys. Plasmas 15, 032306 (2008).
  • [21] M. Vlad, F. Spineanu and S. Benkadda, Plasma Phys. Control. Fusion 50, 065007 (2008).
  • [22] R. Balescu, Phys. Rev. E 68, 046409 (2003).
  • [23] R. Balescu, I. Petrisor and M. Negrea, Plasma Phys. Control. Fusion 47, 2145 (2005).
  • [24] M. Vlad and F. Spineanu, Physica Scripta T107, 204 (2004).
  • [25] F. Spineanu and M. Vlad, Phys. Lett. A 133, 319 (1988).
  • [26] M. Vlad, F. Spineanu and J.H. Misguich, Plasma Phys. Control. Fusion 36, 95 (1994).

This paper may be cited as follows:

Madalina VLAD and Florin SPINEANU, Plasma Fusion Res. 4, 053 (2009).