
Plasma and Fusion Research: Regular Articles Volume 4, 053 (2009)

Trapping, Anomalous Transport, and Quasi-coherent Structures in
Magnetically Confined Plasmas∗)

Madalina VLAD and Florin SPINEANU
National Institute for Laser, Plasma and Radiation Physics, Association Euratom-MEdC, P.O.Box MG-36, Magurele,

Bucharest, Romania

(Received 20 February 2009 / Accepted 27 August 2009)

Strong electrostatic turbulence in magnetically confined plasmas is characterized by trapping or eddying of
particle trajectories produced by the E × B stochastic drift. Trapping is shown to produce strong effects on test
particles and on test modes by causing nonstandard trajectory statistics: non-Gaussian distribution, memory ef-
fects, and coherence. Trapped trajectories form quasi-coherent structure. Trajectory trapping has strong nonlinear
effects on the test modes on turbulent plasmas. We determine the growth rate of drift modes as function of the
statistical characteristics of the background turbulence. We show that trapping provides the physical mechanism
for the inverse cascade observed in drift turbulence and for the zonal flow generation.
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1. Introduction
A component of particle motion in magnetized plas-

mas is the stochastic electric drift produced by the elec-
tric field of the turbulence and by the confining magnetic
field. This drift causes a trapping effect or eddy motion in
the turbulence with slow time variation [1]. Typical parti-
cle trajectories show sequences of trapping events (trajec-
tory winding on almost closed paths) and long jumps. Nu-
merical simulations have shown that the trapping process
completely changes the statistical properties of the trajec-
tories. Particle motion in a stochastic potential has been
studied extensively (see the review papers [2–4] and ref-
erences therein), but the process of trapping was not de-
scribed until recently.

New statistical methods have been developed [5, 6]
that permit determination of the effects of trapping. These
are semi-analytical methods based on a set of determin-
istic trajectories obtained from the Eulerian correlation
of the stochastic velocity. Trapping has been shown to
cause memory effects, quasi-coherent behavior and non-
Gaussian distribution [6]. Trapped trajectories exhibit
quasi-coherent behavior and form structures similar to
fluid vortices. Diffusion coefficients decrease due to trap-
ping and their scaling in the stochastic-field parameters
is modified. We have shown that anomalous diffusion is
caused by collisions and average flows. A review of the ef-
fects of trapping on test particle statistics and on turbulent
transport is presented in the first part of this paper.

The effects of trajectory trapping on the nonlinear dy-
namics of the test modes for the drift turbulence are pre-
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sented in the second part of the paper. The semi-analytical
methods developed for test particles are extended to test
modes in a turbulent magnetized plasmas. Test modes are
usually studied for modeling wave-wave interaction in tur-
bulent plasmas [7]. A different perspective is developed
here by considering test modes on turbulent plasmas. They
are described by gyrokinetic equations with the advection
term containing the stochastic E× B drift whose statistical
characteristics are considered known. Test-mode growth
rate is determined as a function of these statistical param-
eters. We develop a Lagrangian approach of the type of
that introduced by Dupree [8, 9]. The difference is that
the stochastic trajectory trapping is neglected in Dupree’s
method and consequently the results can be applied only
to quasilinear turbulence. Our method takes into account
trapping and the consequent nonstandard trajectory statis-
tics, and thus can describe nonlinear effects that appear in
strong turbulence. We use results obtained for test particles
to determine the average propagator for ion response to a
potential perturbation.

The paper is organized as follows. Section 2 presents
the test-particle model. Section 3 describes the statisti-
cal methods. Section 4 describes the nonlinear effects of
trajectory trapping on test-particle statistics and transport.
Section 5 describes the problem of test modes in turbu-
lent plasmas for drift turbulence where growth rate and fre-
quency are determined as functions of the statistical char-
acteristics of turbulence. Section 6 analyzes the complex
effects of trajectory trapping on drift modes. Section 7
summarizes our conclusions.

c© 2009 The Japan Society of Plasma
Science and Nuclear Fusion Research

053-1



Plasma and Fusion Research: Regular Articles Volume 4, 053 (2009)

2. Test Particle Model
Test particle studies rely on known statistical char-

acteristics of the stochastic field determined from experi-
mental studies or numerical simulations. The main goal of
these studies is to determine the diffusion coefficients. The
statistics of test-particle trajectories provide information
on the transport coefficients in turbulent plasmas without
the need to address the very complicated problem of self-
consistent turbulence that explains the detailed mechanism
of generation and saturation of the turbulent potential. The
possible diffusion regimes can be obtained by considering
various models for the statistics of the stochastic field.

We consider in slab geometry electrostatic turbulence
represented by electrostatic potential φe(x, t), where x ≡
(x1, x2) are the Cartesian coordinates in the plane perpen-
dicular to the confining magnetic field directed along the
z axis, B = Bez. The test-particle motion in the guiding
center approximation is determined by

dx(t)
dt
= u(x, t) ≡ −∇φ(x, t) × ez, (1)

where x(t) is the trajectory of the particle guiding center, ∇
is the gradient in the (x1, x2) plane and φ(x, t) = φe(x, t)/B.
The electrostatic potential φ(x, t) is considered to be a sta-
tionary and homogeneous Gaussian stochastic field, with
zero average. It is completely determined by the two-point
Eulerian correlation function (EC), E(x, t), defined by

E(x, t) ≡ 〈φ(x,, t,)φ(x, + x, t, + t)〉 . (2)

The average 〈. . .〉 is the statistical average over the realiza-
tions of φ(x, t), or the space and time average over x, and t,.
This function yields three parameters that characterize the
(isotropic) stochastic field: the amplitude Φ =

√
E(0, 0),

the correlation time τc, which is the decay time of the Eu-
lerian correlation, and the correlation length λc, which is
the characteristic decay distance. These three parameters
combine in a dimensionless Kubo number

K = τc/τfl (3)

where τfl = λc/V is the time of flight of the particles over
the correlation length and V = Φ/λc is the amplitude of the
stochastic velocity.

The diffusion coefficient is determined by (see [10])

Di(t) =
∫ t

0
dτ Lii(τ) (4)

where

Li j(t; t1) ≡
〈
vi(0, 0) v j(x(t), t)

〉
(5)

is the Lagrangian velocity correlation (LVC). It is ob-
tained using the decorrelation trajectory method, a semi-
analytical approach presented below.

Equation (1) represents the nonlinear kernel of the
test-particle problem. For simplicity, statistical methods

are presented for Eq. (1). The methods can be applied to
complex models with other components of motion (parti-
cle collisions, average flows, motion along the confining
magnetic field, and so on). The effects of these compo-
nents on transport are discussed in Sec. 4.

3. Nested Subensemble Approach
Trajectory trapping is essentially related to the invari-

ance of the Lagrangian potential. Thus, a statistical method
is suitable for the study of this process if it is compati-
ble with the invariance of the potential. Analytical meth-
ods with this property were developed only in the last
decade. They are known as the decorrelation trajectory
method (DTM) [5] and the nested subensemble approach
(NSA) [6]. NSA is the development of DTM as a system-
atic expansion that validates DTM and obtains much more
statistical information.

The main idea in NSA is to study the stochastic equa-
tion (1) in subensembles of realizations of the stochastic
field. First the whole set of realizations R is separated into
subensembles (S 1) that contain all realizations with given
values of the potential and of the velocity in the starting
point of the trajectories x = 0, t = 0:

(S 1) : φ(0, 0) = φ0, u(0, 0) = u0. (6)

Then each subensemble (S 1) is separated into subensem-
bles (S 2) that correspond to fixed values of the second
derivatives of the potential in x = 0, t = 0

(S 2) : φi j(0, 0) ≡ ∂
2φ(x, t)
∂xi∂x j

∣∣∣∣∣∣
x=0,t=0

= φ0
i j (7)

where i j = 11, 12, 22. By continuing this procedure up
to an order n, we construct a system of nested subensem-
bles. The stochastic (Eulerian) potential and velocity in
a subensemble are Gaussian fields but nonstationary and
nonhomogeneous, with space- and time-dependent aver-
ages and correlations. The correlations are zero in x = 0,
t = 0 and increase with distance and time. The average
potential and average velocity in a subensemble depend on
the parameters of that subensemble and of the subensem-
bles that include it. They are determined by the Eulerian
correlation of the potential (see [6] for details).

The stochastic equation (1) is studied in each highest-
order subensemble (S n). The average Eulerian velocity
determines an average motion in each (S n). Neglect-
ing trajectory fluctuations, the average trajectory in (S n),
X(t; S n), is obtained from

dX(t; S n)
dt

= −εi j
∂Φ(X, t; S n)
∂Xj

. (8)

where εi j is the anti-symmetric tensor andΦ(x, t; S n) is the
average potential in the subensemble (S n), Φ(x, t; S n) =
〈φ(x, t)〉S n. This approximation is acceptable because it is
performed in the subensemble (S n) where trajectories are
similar as they are super-determined. In addition to the
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necessary and sufficient initial condition x(0) = 0, supple-
mentary initial conditions are determined by the subensem-
ble definitions in Eqs. (6-7). The strongest condition is the
initial potential φ(0, 0) = φ0, which is a conserved quan-
tity in the static case and determines comparable trajectory
sizes in a subensemble. Moreover, the amplitude of the ve-
locity fluctuations in (S n), the source of the trajectory fluc-
tuations, is zero in the starting point of the trajectories and
reaches the value corresponding to the whole set of realiza-
tions only asymptotically reducing the differences among
the trajectories in (S n) and thus their fluctuations.

Trajectory statistics for the whole set of realizations
(in particular the LVC) are obtained as weighted averages
of these trajectories X(t; S n). The weighting factor is the
probability that a realization belongs to the subensemble
(S n), and is analytically determined.

NSA essentially reduces the problem of determining
the statistical behavior of stochastic trajectories to calcu-
lation of weighted averages of some smooth, deterministic
trajectories obtained from the stochastic potential EC. This
semi-analytical statistical approach is a systematic expan-
sion that satisfies at each order n > 1 all statistical con-
ditions required by the invariance of the Lagrangian po-
tential in the static case. The order n = 1 corresponds to
the decorrelation trajectory method introduced in [5], for
which only the average potential is conserved.

NSA is quickly convergent because the mixing of
periodic trajectories, which characterizes this nonlinear
stochastic process, is directly described at each order. Re-
sults obtained in the first order (the decorrelation trajectory
method) for D(t) are essentially not modified in the sec-
ond order [6]. Thus, the decorrelation trajectory method
is a good approximation for determining diffusion coeffi-
cients. Second-order NSA is important because it provides
detailed statistical information on trajectories, which con-
tributes to the understanding of the trapping process.

4. Trapping Effects on Test Particles
4.1 Trajectory structures

Detailed statistical information about particle trajec-
tories has been obtained by NSA [6]. This method deter-
mines the statistics of trajectories that start in points with
given values of the potential, and demonstrates the high
degree of coherence of the trapped trajectories.

Trapped trajectories correspond to large absolute val-
ues of the initial potential. In contrast trajectories starting
from points with the potential close to zero have long dis-
placements before decorrelation. These two types of tra-
jectories have completely different statistical characteris-
tics [6].

Trapped trajectories exhibit quasi-coherent behavior.
Their average displacement, dispersion and probability
distribution function saturate in a time τs. Time evolu-
tion of the square distance between two trajectories is very
slow, showing that neighboring particles have coherent

Fig. 1 Average size of the trajectory structures for a Gaussian
EC (dashed line) and for an EC that decays as 1/r2 (solid
line).

motion for a time much longer than τs. These trajecto-
ries are characterized by a strong clump effect: increase
in average square distance is slower than suggested by
the Richardson law. The trajectories form structures that
are similar to fluid vortices and represent eddying regions.
Structure size and buildup time depend on the value of the
initial potential. Trajectory structures appear with all sizes,
but their characteristic formation time increases with the
size. The structures or eddying regions are permanent in
static stochastic potentials. The saturation time τs is the
average time necessary for the formation of the structure.
In time-dependent potentials, structures with τs > τc are
destroyed and the corresponding trajectories contribute to
the diffusion process.

Free trajectories have a continuously growing average
displacement and dispersion. They exhibit incoherent be-
havior and no clump effect.

Figure 1 shows a plot of trajectory-structure average
size S (K) in a time-dependent potential. At K < 1 struc-
tures are absent (S � 0). At K > 1 they appear and con-
tinue to increase with K. Dependence on K at large K is a
power law with the exponent dependent on the EC of the
potential. For Gaussian EC, the exponent is 0.19; for an
EC that decays as 1/r2 it is 0.35.

4.2 Anomalous diffusion regimes
Test-particle studies connected with experimental

measurements of the statistical properties of the turbulence
provide the transport coefficients with the condition that
there is space-time scale separation between the fluctua-
tions and the average quantities. Particle density advected
by the stochastic E × B drift in turbulent plasmas leads
in these conditions to a diffusion equation for the average
density with the diffusion coefficient given by the asymp-
totic value of Eq. (4). Recent numerical simulations [11]
confirm a close agreement between the diffusion coeffi-
cient obtained from the density flux and the test-particle
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diffusion coefficient. Experimental based studies of test-
particle transport permit us to simplify the complicated
self-consistent problem of turbulence and to model the
transport coefficients by means of test-particle stochastic
advection. The running diffusion coefficient D(t) is defined
as the time derivative of the mean square displacement of
test particles and is determined according to Eq. (4) as the
time integral of the Lagrangian velocity correlation (LVC).
Thus, the test-particle approach is based on the evaluation
of the LVC for a given fluctuating potential EC.

Turbulent transport in magnetized plasmas is strongly
nonlinear. It is characterized by the trapping of trajecto-
ries, which strongly influences the transport coefficient and
the statistical characteristics of the trajectories. Transport
induced by the E× B stochastic drift in electrostatic turbu-
lence [12] (including the effects of collisions [13], average
flows [14], motion along magnetic field [15], and the effect
of magnetic shear [16]) and transport in magnetic turbu-
lence [17, 18] have been studied by the decorrelation tra-
jectory method. It was also shown that direct transport (an
average velocity) appears in turbulent magnetized plasmas
due to the inhomogeneity of the magnetic field [19–21].
This statistical method was developed for the study of com-
plex processes such as zonal flow generation [22, 23].

The results of all these studies are rather unexpected
when the nonlinear effects are strong. The diffusion coeffi-
cients differ completely from those obtained in quasilinear
conditions. A rich class of anomalous diffusion regimes
is obtained for which the dependence on the parameters is
completely different compared to the scaling obtained in
quasilinear turbulence. All the components of particle mo-
tion such as parallel motion, collisions, and average flows
strongly influence the diffusion coefficients in nonlinear
regimes characterized by trajectory trapping.

The reason for these anomalous transport regimes can
be understood by analyzing the shape of the correlation
of the Lagrangian velocity for particles moving by the
E × B drift in a static potential [24]. In the absence of
trapping, the typical LVC for a static field is a function
that decays to zero in a time of the order τfl = λc/V .
This leads to Bohm-type asymptotic diffusion coefficients
DB = cV2τfl = cVλc. Only the constant c is influenced by
the shape of the stochastic field EC. For E×B drift, a com-
pletely different LVC shape is obtained for static potentials.
Figure 2 shows a typical example of the LVC. This func-
tion decays to zero in a time of the order τfl, becomes neg-
ative, reaches a minimum, and then decays to zero with a
long negative tail. The tail exhibits power-law decay with
an exponent that depends on the potential EC [12]. Pos-
itive and negative parts compensate such that the integral
of L(t), the running diffusion coefficient D(t), decays to
zero. Transport in static potential is thus subdiffusive. The
long LVC tail shows that stochastic trajectories in static
potential have a long time memory. This LVC shape is a
consequence of trajectory trapping.

The stochastic process that has the LVC of the type

Fig. 2 Typical Lagrangian velocity correlation in static poten-
tial.

shown in Fig. 2 is unstable, and any weak perturbation
strongly influences transport. A perturbation represents a
decorrelation mechanism. Its strength is characterized by
a decorrelation time τd. Weak perturbations correspond
to long decorrelation times, τd > τfl. In the absence of
trapping, such weak perturbations do not modify the dif-
fusion coefficient because the LVC is zero at t > τfl. In
the presence of trapping, which is characterized by a long
time LVC as in Fig. 2, such perturbation influences the tail
of the LVC and destroys the equilibrium between positive
and negative parts. Consequently, the diffusion coefficient
is a decreasing function of τd. This means that, when the
decorrelation mechanism becomes stronger (τd decreases),
transport increases because the long time LVC is nega-
tive. This behavior differs completely from that obtained
in stochastic fields that do not produce trapping. In the lat-
ter case, transport is stable to weak perturbations. Decorre-
lation influences appear only when decorrelation is strong
such that τd < τfl and determine the increase of the diffu-
sion coefficient with the increase of τd.

This inverse response to perturbations in the presence
of trapping is due to the fact that stronger perturbations
(with smaller τd) release larger numbers of trajectories,
which contribute to diffusion.

5. Test Modes on Drift Turbulence
Test-particle trajectories are strongly related to plasma

turbulence. Plasma dynamics basically result from the
Vlasov-Maxwell system of equations representing conser-
vation laws along particle trajectories for the distribution
functions. Studies of plasma turbulence based on trajec-
tories were initiated by Dupree [8, 9] and developed es-
pecially in the 1970s (see review paper [7] and references
therein). These methods do not account for trajectory trap-
ping and thus apply to the quasilinear regime or to unmag-
netized plasmas. A very important problem that has yet
to be understood is the effect of the nonstandard statistical
characteristics of test-particle trajectories on the evolution
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of instabilities and turbulence in magnetized plasmas.
We now extend the Lagrangian methods of the type

described in [9, 25, 26] to the nonlinear regime charac-
terized by trapping. We study linear modes on turbulent
plasma with know statistical characteristics. The disper-
sion relation for such test modes is determined as a func-
tion of the turbulence characteristics. We consider the drift
instability in slab geometry with constant magnetic field.
The combined effect of the parallel motion of electrons
(nonadiabatic response) and the finite Larmor radius of the
ions destabilizes the drift waves.

The gyrokinetic equations are linearized not around
the unperturbed state as in the linear theory but rather
around a turbulent state with known spectrum. The per-
turbations of the electron and ion distribution functions are
obtained from the gyrokinetic equation by the method of
characteristics as integrals along test-particle trajectories
of the source terms determined by the average density gra-
dient.

Background turbulence produces two modifications to
the mode equation one for stochastic E × B drift that ap-
pears in the trajectories and the other for fluctuations in
diamagnetic velocity. Both effects are important for ions
and depend on turbulence parameters. Electron response
is approximately the same as in quiescent plasma.

5.1 Statistics of the characteristics
We start from the basic gyrokinetic equation for con-

stant magnetic field in slab geometry

∂t f α−∇φ×ez ·∇ f α+vz∂z f α− eα
mα

(∂zφ) ∂vz f α = 0 (9)

where α represents the species (α = e, i). Temperatures are
constant and Te = Ti. A density gradient is taken along
the x direction. The solution for the potential in the zero
Larmor radius limit is

φ(x, z, t) = φ0(x − V∗t, z), (10)

where φ0 is the initial condition and V∗ is the diamagnetic
velocity produced by the density gradient. This shows that
the potential is not changed but rather is displaced by the
diamagnetic velocity. The wave-type solution corresponds
to drift waves that have ω = kyV∗ and are stable in this
limit. The finite Larmor radius effects combined with the
nonadiabatic response of the electrons destabilizes the drift
waves. Consequently, the amplitude and the shape of the
potential are modified, but on a much slower time scale.

Equation (9) is linearized around the turbulent state
with potential φ(x, t). The latter is considered to be Gaus-
sian with known EC. A wave-type perturbation of the po-
tential that is small enough to have negligible influence
on the particle trajectories is introduced. Solutions for the
electron and ion density perturbations are obtained by the
method of characteristics as integrals along particle trajec-
tories in the background potential. The characteristic times

for drift turbulence are in the order

τe
‖ 
 τ∗ 
 τc 
 τi

‖, (11)

where τe
‖ , τ

i
‖ are the parallel decorrelation times for elec-

trons and ions, respectively (τe,i
‖ = λ‖/v

e,i
th where λ‖ is the

parallel correlation length and ve,ith the thermal velocity),
τ∗ = λc/V∗ is the characteristic time for the potential drift,
and τc is the correlation time of the potential. The linear
and nonlinear regimes are determined by the position of
the time of flight in this ordering. It is much smaller than
τc and much larger than τe

‖ and thus the statistical charac-
teristics of the trajectories essentially depend on the ratio
τ∗/τfl.

The quasilinear case corresponds to τ∗/τfl 
 1, which
means turbulence with the amplitude of the E × B drift
smaller than the diamagnetic velocity (V/V∗ 
 1). Motion
of the potential produces fast decorrelation, and trapping
does not appear. The displacement probability is Gaussian
and the diffusion coefficient is Dql = V2τ∗.

The nonlinear case corresponds to τ∗/τfl > 1 (V/V∗ >
1). Motion of the potential is slow and trajectory structures
produced by trapping appear.

Test-particle motion in a drifting potential is obtained
by a Galilean transformation from the motion produced by
a stochastic E × B drift and the average velocity Vd. This
process was studied in [14]. It was shown that strips of
opened contour lines of the effective potential φ + xVd ap-
pear due to average velocity Vd, the strips increase in width
with Vd until at Vd > V they completely eliminate the
closed contour lines. The Lagrangian correlation of veloc-
ity in the presence of an average velocity Vd < V does not
decay to zero as in Fig. 2 for a static potential, but rather
has positive asymptotic value at t → ∞. Consequently,
transport along the average velocity is superdiffusive in the
static potential and diffusive with a large diffusion coef-
ficient (proportional to the average velocity) in the time-
dependent potential. Some of the particles are trapped and
the rest move on the strips of opened contour lines of the
effective potential. The invariance of the Lagrangian ve-
locity distribution shows that the average velocity of the
free particles V ′fr fulfills the condition

nfrV
′
fr = Vd, (12)

where nfr is the fraction of free trajectories (related to
ntr, the fraction of trapped trajectories, by ntr + nfr = 1).
This shows that the free trajectories move with an average
velocity that is larger than the Eulerian average velocity
(V ′fr > Vd).

The characteristics of drift turbulence are obtained
from the above problem by changing the reference frame to
one that moves with the velocity −Vd (such that the average
velocity becomes zero) and taking V∗ = −Vd. Accordingly,
Eq. (12) leads to

nfrVfr + ntrV∗ = 0, (13)
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where Vfr = V ′fr − Vd. Thus, trapped particles (structures)
are advected by the moving potential while the other parti-
cles have an average motion in the opposite direction with
a velocity Vfr = −V∗ntr/nfr. This shows that there are par-
ticle flows in opposite directions, induced by the drifting
potential if the amplitude of the stochastic E × B veloc-
ity is larger than the velocity of the potential. Displace-
ment probability is split into two parts: the probability of
trapped particles and the probability of free particles. The
first is a picked function that has constant width and moves
with velocity V∗. The second, is a Gaussian-like function
with average displacement 〈y〉fr = Vfrt = −V∗t ntr/nfr. The
displacement probability at t < τc is modeled by

P(x, y, t) = ntrG(x, y − V∗t; S x, S y)

+ nfrG(x, y − Vfrt; S ′x, S
′
y) (14)

where G(x, y; S x, S y) is the two-dimensional Gaussian dis-
tribution with dispersion S x, S y. For simplicity, we con-
sider the distribution of trapped particles to be a Gaus-
sian function but with small (fixed) dispersion that repre-
sents the average size of the structures. The shape of this
function does not change much these estimations. Dis-
persion for the free trajectories grows linearly in time:
S ′x = S x + 2Dxt, S ′y = S y + 2Dyt.

5.2 Growth rate of drift modes in turbulent
plasma

The average propagator of a mode with frequency ω
and wave number k =

(
kx, ky

)

Π =

∫ t

−∞
dτ

〈
exp (−ik · xα(τ))〉 exp (iω(t − τ)) (15)

is evaluated using the above results for trajectory statistics.
Here, xα(τ) is the trajectory of the particle of type α in the
moving potential integrated backward in time with the con-
dition x at time t. Using Eq. (14) to determine the average
in this equation, we obtain for the ion propagator

Π = −iF
⎡⎢⎢⎢⎢⎣ ntr

ω + kyV∗
+

nfr

ω + kyVfr + ik2
i Di

⎤⎥⎥⎥⎥⎦ (16)

where

F = exp

(
−1

2
k2

i S 2

)
. (17)

The average ion propagator is thus a function of the size
S (K) of the structures and of the fractions of trapped and
free particles. The propagator for the electrons is not
changed.

The dispersion relation (the quasineutrality condition)
is obtained as

2 + i
√
π
ω − kyV∗
|kz| vTe

= iΠΓ0

[
ω + V∗

(
ky + ikik jRi j

)]
(18)

where Γ0 = exp(−b)I0(b), b = k2⊥ρ2
L/2 and ρL is the ion

Larmor radius. The tensor Ri j has the dimension of a

length and is defined by

Rji(τ, t) ≡
∫ t

τ

dθ′
∫ τ−θ′

−∞
dθMji(|θ|) (19)

where Mi j is the Lagrangian correlation

Mji(
∣∣∣θ′ − θ∣∣∣) ≡ 〈

v j

(
xi(θ′), z, θ′

)
∂2vi

(
xi(θ), z, θ

)〉
,

(20)

and v j is the E × B drift velocity component. The summa-
tion rule over the repeated indices is used in Eq. (18).

The approximate solution of the dispersion relation
(18) is

ω = kyV
eff
∗ , (21)

Veff
∗ = V∗

Γ0F (1 − n) + 2n
2 − Γ0F , (22)

γ =

√
π

|kz| vTe

k2
y

(
V∗ − Veff∗

) (
Veff∗ − nV∗

)
2 − Γ0F

− nfrk
2
i Di
Γ0F

2

(
2 − Γ0F ntr

Γ0F (2nfr − ntr)

)2

+ kik jRi jV
eff
∗ , (23)

where n = ntr/nfr.
Several effects appear in the test-mode characteristics

due to background turbulence. Ion-trajectory spreading
produces diffusion Di that influences the growth rate (23)
in both linear and nonlinear conditions. The term propor-
tional to Di in Eq. (23) is essentially similar to the result
of Dupree although there are influences due to trapping
namely an attenuation factor and a change in Di. Several
additional influences appear only in the nonlinear regime.
The first is the factor F given by Eq. (17), which is pro-
duced by the trajectory structures and modifies the mode
frequency. The ion flows induced by the drifting potential
are represented by the fractions ntr and nfr. The tensor Ri j is
determined by the fluctuations in diamagnetic velocity due
to the background turbulence. We analyze these processes
in the next section.

6. Trapping Effects on the Test Modes
Trajectory trapping has a complex influence on test

mode. This can be understood by considering the evolu-
tion of drift turbulence starting from a stochastic potential
with very small amplitude, which can be deduced from the
growth rates of the test modes.

The trajectories are Gaussian, there is no trapping in
such potential, and the only effect of background turbu-
lence is ion-trajectory diffusion that produces resonance
broadening. The well-known results of drift modes in
quasilinear turbulence are obtained

ω = kyV∗
Γ0

2 − Γ0
,

γ =

√
π

|kz| vTe

(
kyV∗ − ω

)
kyV∗

2 − Γ0
− k2

i Dql, (24)
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where Dx = Dy = Dql = V2λc/V∗. This shows that modes
with large k are damped due to ion-trajectory diffusion as
the amplitude of the potential increases. The spectrum
maximum is for ω = kyV∗/2 and corresponds to k⊥ρL ∼ 1.

When the nonlinear stage is attained for V > V∗, the
first effect is produced by the quasi-coherent component of
ion motion. The ion-trajectory structures determine the F
factor (17), which modifies the effective diamagnetic ve-
locity (22) and the frequency ω. At this stage, the flows
can be neglected (ntr � 0, nfr � 1) and Rji � 0 in Eqs. (21)-
(23), so only the F factor is important. It is interesting to
note that this factors appears in Eqs. (21)-(23) as a multiple
of Γ0, although it comes from a different source (F comes
from the propagator, Γ0 comes from the gyro-average of
the mode potential). This shows that trapping or eddying
motion has the same attenuation effect on potential as does
the gyro-average. The spectrum maximum is obtained for
smaller k⊥, determined by the size of the trajectory struc-
tures from the condition k⊥S ∼ 1. This means that the
unstable wave-number range is displaced toward small val-
ues. The maximum growth rate is not changed but rather
displaced at values of the order 1/S . Consequently, in this
stage, both amplitude and correlation length of the turbu-
lence increase.

At larger background-potential amplitudes, when the
fractions of trapped and free ions become comparable, the
ion flows induced by the moving potential become im-
portant. These flows determine the increase in effective
diamagnetic velocity (22) toward the diamagnetic velocity
and the modification of the drift-mode growth rate. The lat-
ter decreases and for ntr = nfr is negative. The evolution of
the amplitude becomes slower and eventually the growth
rates vanishes and changes the sign. Thus, ion flows in-
duced by the moving potential damp the drift modes.

Fluctuations in diamagnetic velocity due to back-
ground turbulence determine a direct contribution to the
growth rate (the tensor Ri j). This term is zero for homo-
geneous and isotropic turbulence and depends strongly on
the anisotropy parameters. The i = j = 1 component cor-
responds to zonal flows (modes with ky = 0). Preliminary
results show that it appears for trapped particles due to the
anisotropy induced by the ion flows.

7. Summary and Conclusions
We investigated the problem of stochastic advection

of test particles by the E × B drift in turbulent plasmas.
We showed that trajectory trapping or eddying has com-
plex nonlinear effects on the statistical characteristics of
trajectories and transport. Nonlinear effects are very strong
for static potentials. Trajectories are non-Gaussian, they
possess statistical memory and coherence, and they form
structures. These properties persist if the system is weakly
perturbed by time variation of the potential or by other
components of motion (collisions, poloidal rotation, par-
allel motion). The memory effect (long tail of the LVC)

determines anomalous diffusion regimes.
Trajectory trapping also influences the evolution of

turbulence. We presented recent results for test modes
on turbulent plasmas. These results are based on a La-
grangian method that takes into account ion trapping or ed-
dying. Drift-mode growth rates and frequencies in turbu-
lent plasma are estimated as functions of the characteristics
of turbulence. The effects of background turbulence appear
in particle trajectories (characteristics of Vlasov equations)
and in fluctuations in diamagnetic velocity produced by
density fluctuations. We showed that the nonlinear process
of trapping, which determines the nonstandard statistical
properties of trajectories, has a very strong and complex
influence on the evolution of turbulence that appears when
the amplitude of the E × B drift becomes larger than the
diamagnetic velocity.

This work presents a different physical perspective
on the nonlinear evolution of drift waves. The main role
is played by ion trapping in the stochastic potential that
moves with diamagnetic velocity. We showed that the
moving potential determines ion flows when the amplitude
of the E×B velocity is greater than the diamagnetic veloc-
ity. Some of the ions are trapped and move with the poten-
tial while the rest of the ions drift in the opposite direction.
These opposite (zonal) flows compensate such that the av-
erage velocity is zero. The evolution of turbulence toward
large wavelengths (the inverse cascade) is due to ion trap-
ping, which averages the potential and decreases the ef-
fective diamagnetic velocity. Ion flows produced by the
moving potential determine the decay of the growth rate
and eventually the damping of the drift modes. Ion flows
also generate zonal flows due to nonlinear interaction with
fluctuations in diamagnetic velocity.
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