[Table of Contents]

Plasma and Fusion Research

Volume 4, 052 (2009)

Regular Articles


Microplasma Array Serving as Photonic Crystals and Plasmon Chains
Osamu SAKAI, Teruki NAITO and Kunihide TACHIBANA
Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510, Japan
(Received 9 September 2008 / Accepted 7 March 2009 / Published 5 November 2009)

Abstract

An array of microplasmas with sizes ranging from a millimeter to a micrometer, has potential for novel and promising electromagnetic-wave media, especially when the wave frequency is below the electron plasma frequency. Photonic crystals or band-gap materials composed of microplasmas have unique properties arising from their loss term, and they can become band-pass filters instead of the band-stop filters usually observed in photonic crystals of dielectrics. Such behavior is well understood using the dispersion relation in a three-dimensional space of frequency and complex wavenumber with real and imaginary parts. Another functional array is a simple one-dimensional (1D) array; it can conduct microwaves for a wide frequency range below the electron plasma frequency. The propagating modes are similar to the coupling of localized surface plasmon polaritons observed along a metallic nanoparticle chain in the photon range; however a 1D microplasma array features differ from those of a metallic sphere array, leading to a dynamic wide-band waveguide.


Keywords

microplasma, electromagnetic waves, photonic crystal, surface wave, localized surface plasmon polariton

DOI: 10.1585/pfr.4.052


References

  • [1] T.H. Stix, The Theory of Plasma Waves (McGraw-Hill, New York, 1962).
  • [2] V.L. Ginzburg, The Propagation of Electromagnetic Waves in Plasma (Pergamon Press, Oxford, 1964).
  • [3] E. Yablonovitch, Science 289, 557 (2000).
  • [4] S. Noda and T. Baba, ed., Roadmap on Photonic Crystals (Kluwer Academic Publishing, Boston, 2003).
  • [5] J. Faith, S.P. Kuo and J. Huang, Phys. Rev. E 55, 1843 (1997).
  • [6] D.K. Kalluri, Electromagnetics of Complex Media (CRC Press, Boca Raton, 1998).
  • [7] H. Hojo and A. Mase, J. Plasma Fusion Res 80, 89 (2004).
  • [8] O. Sakai, T. Sakaguchi and K. Tachibana, Appl. Phys. Lett. 87, 241505 (2005).
  • [9] O. Sakai, T. Sakaguchi, Y. Ito and K. Tachibana, Plasma Phys. Control. Fusion 47, B617 (2005).
  • [10] O. Sakai, T. Sakaguchi and K. Tachibana, J. Appl. Phys. 101, 073304 (2007).
  • [11] T. Sakaguchi, O. Sakai and K. Tachibana, J. Appl. Phys. 101, 073305 (2007).
  • [12] O. Sakai and K. Tachibana, IEEE Trans. Plasma Sci. 35, 1267 (2007).
  • [13] O. Sakai, T. Sakaguchi, T. Naito, D.-S. Lee and K. Tachibana, Plasma Phys. Control. Fusion 49, B453 (2007).
  • [14] T. Naito, O. Sakai and K. Tachibana, Appl. Phys. Express 1, 066003 (2008).
  • [15] J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner and F.R. Aussenegg, Phys. Rev. Lett. 82, 2590 (1999).
  • [16] M.L. Brongersma, J.W. Hartman and H.A. Atwater, Phys. Rev. B 62, R16356 (2000).
  • [17] S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, E., B.E. Koel and A.A. Requicha, Nature Mat. 2, 229 (2003).
  • [18] A.W. Trivelpiece and R.W. Gould, J. Appl. Phys. 30, 1784 (1959).
  • [19] J.C. Nickel, J.V. Parker and R.W. Gould, Phys. Rev. Lett. 11, 183 (1963).
  • [20] J.V. Parker, J.C. Nickel and R.W. Gould, Phys. Fluids 7, 1489 (1964).
  • [21] H.C. Hoh, Phys. Rev. 133, A1016 (1964).
  • [22] D.J. Cooperberg, Phys. Plasmas 5, 862 (1998).
  • [23] Y. Yasaka and H. Hojo, Phys. Plasmas 7, 1601 (2000).
  • [24] I.P. Ganachev and H. Sugai, Surf. Coat. Technol. 200, 792 (2005).
  • [25] K.C. Huang, E. Lidorikis, X. Jiang, J.D. Jannopoulos, K.A. Nelson, P. Bienstman and S. Fan, Phys. Rev. B 69, 195111 (2004).
  • [26] T. Ito and K. Sakoda, Phys. Rev. B 64, 045117 (2001).
  • [27] F. Forstmann and R.R. Gerhardts, Metal Optics Near the Plasma Frequency (Springer-Verlag, Berlin, 1986).
  • [28] A. Eguiluz and J.J. Quinn, Phys. Rev. B 14, 1347 (1976).
  • [29] J.E. Sipe, Surf. Sci. 84, 75 (1979).
  • [30] C. Schwartz and W.L. Schaich, Phys. Rev. B 26, 7008 (1982).
  • [31] J.M. Pitarke, V.M. Silkin, E.V. Chulkov and P.M. Echenique, Rep. Prog. Phys. 70, 1 (2007).
  • [32] M.A. Lieberman and A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (John Wiley & Sons, New York, 1994).

This paper may be cited as follows:

Osamu SAKAI, Teruki NAITO and Kunihide TACHIBANA, Plasma Fusion Res. 4, 052 (2009).