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An array of microplasmas with sizes ranging from a millimeter to a micrometer, has potential for novel
and promising electromagnetic-wave media, especially when the wave frequency is below the electron plasma
frequency. Photonic crystals or band-gap materials composed of microplasmas have unique properties arising
from their loss term, and they can become band-pass filters instead of the band-stop filters usually observed
in photonic crystals of dielectrics. Such behavior is well understood using the dispersion relation in a three-
dimensional space of frequency and complex wavenumber with real and imaginary parts. Another functional
array is a simple one-dimensional (1D) array; it can conduct microwaves for a wide frequency range below the
electron plasma frequency. The propagating modes are similar to the coupling of localized surface plasmon
polaritons observed along a metallic nanoparticle chain in the photon range; however a 1D microplasma array
features differ from those of a metallic sphere array, leading to a dynamic wide-band waveguide.
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1. Introduction
Electromagnetic waves propagating in a large plasma

have been explored in plasma physics for wide applica-
tion to control fusion plasmas and to understand phenom-
ena in the ionosphere [1, 2]. In most cases wave propaga-
tion has been investigated implicitly in the region where
the plasma size is larger than the wavelength of electro-
magnetic waves. Plasma production for material process-
ing has been also in similar regimes, where radiofrequency
waves and microwaves with their wavelength less than the
characteristic length of the device are the sources of power
consumption or are simply coupled to a plasma capaci-
tively or inductively.

The present report investigates wave propagation
where the wavelength is comparable to the characteristic
length of a given periodic structure. Another important as-
pect of our study is the spatial design of plasma discon-
tinuities and periodicities, around which electromagnetic
waves transmit and reflect due to different refractive in-
dexes in both cases, and sometimes propagate as surface
wave modes. Furthermore, since available plasmas in gas
discharges are collisional, electron elastic collisions induce
an imaginary part of the wavenumber. To study such mat-
ters, this report focuses on uses of microplasmas with size
ranging from a millimeter to a micrometer and electron
densities ne ranges from 1012 cm−3 to 1016 cm−3.

Periodic structure in the range of the wavelength
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of electromagnetic waves has been well investigated as
photonic crystals in photonics [3, 4], in which dielectrics
are arranged periodically in two- or three-dimensional
(2D or 3D) space. Band gaps and other prominent fea-
tures have been observed so far. If we use microplas-
mas as components of photonic crystals, the time-varying
and frequency-dependent dielectric constant in plasmas
is expected to add novel functions to photonic crystals.
This has been proposed theoretically [5–7] and verified
experimentally [8–12]. In addition, the effects of the imag-
inary part of the wavenumber, which are outstanding below
the electron plasma frequency ωpe, alter the functions of
these band-gap materials significantly [13, 14], which will
be explained in this report specifically in Secs. 2 and 3 be-
low.

Another interesting phenomenon of periodic struc-
tures in the photon range is a metallic-nanoparticle chain
yielding a photon waveguide by coupled localized sur-
face plasmons [15–17]. A similar function for conduc-
tion of electromagnetic waves in the microwave range
is possible along a microplasma chain below ωpe, based
on the suggestions in the previous studies about surface
waves on plasmas [18–24]; we reported such phenomena
briefly [14]. This phenomenon is also studied in more de-
tail in this manuscript in Secs. 2 and 3 below.

In Sec. 4, we discuss these two functional structures.
We point out differences plasma “plasmon” chains and or-
dinary metallic-nanoparticle chains; aside from the differ-
ence in frequency range, their physical properties will be
compared. Also we describe the emerging conditions of
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band-gap materials and plasmon chains in a microplasma
array; this discussion will clarify the requirements for fu-
ture applications to high-frequency devices using these two
structures.

2. Dispersion Relations of Micro-
plasma Array

2.1 Band gap in a complex wavenumber
plane

Figure 1 shows the dispersion relation of 2D wave
propagation in a 2D microplasma array; in solid physics,
it is called a band diagram, and the wavenumber is cho-
sen as a real number. This band diagram was derived using
the modified plane-wave expansion method [10], assuming
that microplasmas with an electron density of 4×1013 cm−3

and diameter of 1.0 mm were arranged in a square lattice
of lattice constant a = 2.5 mm, surrounded by a dielectric
with permittivity of 3.0. The electron elastic collision fre-
quency νm was set to 0.5ωpe. When the electromagnetic
wave frequency ω/2π was above ωpe/2π, features similar
to those in band diagrams in a dielectric photonic crys-
tal were observed. Below ωpe, flat bands with very low
group velocity were present throughout the frequency, and
a branch along the light line went across them. A band
gap in the Γ-X direction was found around ωa/2πc = 0.3
along this branch. This band gap is well below ωpe, where
the permittivity is less than zero, and an additional prop-
erty may be present that does not occur in typical dielectric

Fig. 1 Dispersion relation (or band diagram) of microplasma ar-
ray calculated by modified plane-expansion method. Mi-
croplasma has a diameter of 1.0 mm with lattice constant
of square lattice 2.5 mm. The shape of the profile of elec-
tron density of 4 × 1013 cm−3 resembles that in the slab
case, and the electron elastic collision frequency is set to
be 0.5ωpe.

photonic crystals.
In a general collisional plasma, the loss term of elec-

tromagnetic waves arising from electron elastic collisions
becomes large below ωpe. Such a tendency is displayed in
Fig. 2, where the imaginary part of the wavenumber ki as
well as the real part kr in a bulk plasma is shown in a 3D
ω − kr − ki space. We assume that the permittivity ε is in
the Drude model, as

ε = 1 − ω
2
pe

ω2

1
1 − j(νm/ω)

. (1)

To derive the dispersion relation in Fig. 2, ωpe/2π is set
to 57 GHz, and νm = 0.5ωpe. kr is not zero even when
ω < ωpe, although the real part of ε is negative where ω2 <

ω2
pe + ν

2
m. ki is large when ω < ωpe, and kr and ki are not

coupled via a simple function. The resultant trajectory on
the kr − ki plane is complicated, and so the propagation
constant (γ = α− jβ) is very distinctive in a plasma, unlike
in other solid materials.

When we consider such effects resulting from the
complicated kr and ki relationship, other underlying prop-
erties of lossy band gap materials can be noted. In Fig. 3,
we redrew the part of the band diagram in the Γ-X direction
in Fig. 1 in a similar manner to Fig. 2; not only ω − kr but
also ω − ki was plotted using the relation ωi = −vgki [25],
where vg = dω/dk and ωi is the imaginary part of the wave
angular frequency derived by the modified plane-wave ex-
pansion method. We also note that a number of the flat
bands shown in Fig. 1 were removed, and we concentrated
on the branch along the light line.

In the ω − kr plane in Fig. 3, a band gap was clearly
observed from ωa/2πc = 0.29 to 0.32, and the dispersion
relation was divided into upper and lower bands. In the
lower band, there was a gap from ωa/2πc = 0.17 to 0.21
arising from the crossing of one flat band, but kr and ki were
continuous on both sides of the gap. This fact indicates that
this is a simple frequency band gap caused by deformation
of the flat-band crossing.

Fig. 2 Dispersion relation of an infinite non-magnetized plasma
in 3D space with 3 axes of real and imaginary wavenum-
ber and frequency. Electron density is 4 × 1013 cm−3, and
the electron elastic collision frequency is set 0.5ωpe.

052-2



Plasma and Fusion Research: Regular Articles Volume 4, 052 (2009)

Fig. 3 Dispersion relation (or band diagram) of microplasma ar-
ray in 3D space with parameters similar to those in Fig. 1.
Data points of ki at kia/2π > 1.0 are out of range in this
figure.

However, the band gap from ωa/2πc = 0.29 to 0.32
yielded very large differences between the upper and lower
bands. Although kr was equal on both sides at ωa/2πc =
0.29 and 0.32, ki of the upper band was one order of mag-
nitude larger than that of the lower band. The trajectory
on the kr − ki plane clarifies that these two bands had com-
pletely different properties. This is mainly attributed to dif-
ferent wave-field profiles in one lattice [12]. On the upper
band, wave fields concentrate on the plasma region where
ε is relatively small, but on the lower band, wave fields are
localized outside the plasma region where ε is relatively
large. If a band gap is located above ωpe/2π, the differ-
ences in the field profile changes only the matching condi-
tion between inside and outside the array regions, and the
band gap shows the features of a band-stop filter [11]. On
the other hand, if a band gap is located below ωpe/2π, the
field profile in the periodic structure strongly affects atten-
uation of the propagating waves by electron elastic colli-
sions [14]. The experimental observation of this band gap
will be described in Sec. 3.1.

2.2 Coupling of localized surface waves
As shown in Fig. 1, a number of flat bands are present

below ωpe/2π, and they are composed of coupled modes of
localized surface waves; Ito and Sakoda discussed the cou-
pling conditions in the case of localized surface plasmons
(LSPs) on a metal sphere in the photon range [26]. Here
we show similar wave propagation by coupling of the lo-
calized surface modes, and the outstanding features in the
case of plasmas are addressed.

Figure 4 shows the dispersion relation of 2D prop-
agation in a rectangular lattice. This band diagram was
derived using the direct solution of the wave equation us-

Fig. 4 Dispersion relation (or band diagram) of microplasma ar-
ray determined by direct calculation of the wave equation
with complex electric field. Microplasma has a diame-
ter of 1.0 mm with lattice constants of rectangular lattice
3.0 × 7.5 mm. The profile of electron density has a peak
value of 1×1013 cm−3; its shape resembles that of J0 with
zero at the boundary.

ing complex electric fields [10], and here we assumed that
microplasmas with ne of 1 × 1013 cm−3 and diameter of
1.5 mm were arranged in a rectangular lattice of lattice
constants ax = 3.0 mm and ay = 7.5 mm, surrounded by
free space. Electron elastic collisions were neglected in
this calculation for simplicity, and an electron-density pro-
file consisting of a Bessel function of the first kind of the
0th order J0(Ar) was assumed, where r is the position from
the center of the circular cross section of a microplasma,
and constant A was set to fulfill the boundary condition
with density ne = 0 on its edge. The peak density was set
to 1×1013 cm−3, which was also the value in the case of the
slab density profile with constant ne in Fig. 5. When we in-
vestigate wave propagation along a microplasma “chain,”
the partial dispersion relation in the Γ-X direction is con-
sidered.

At frequencies above ωpe/2π (∼28 GHz), propagation
in equivalent dielectric poles was observed. At lower fre-
quencies, multiple flat bands with very low group velocity
were present, similar to those in Fig. 1; this supports the
existence of LSP-like modes, which will be verified later
in Fig. 5. Because the bands are almost flat in the ω− k di-
agram, they can match various wave modes with different
space impedance, which is expressed in the gradient of the
ω − k plot.

In the upper part of Fig. 5, profiles in the slab case
exhibit similar features to those of LSPs around a metal
sphere [27]; electric fields are concentrated on the surface
of the sphere, and the azimuthal mode number of the stand-
ing waves l around the sphere increases from l = 1 to 4
as the frequency increases. On the other hand, from the
knowledge of metal optics, LSPs on the metal sphere are
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Fig. 5 Spatial profiles of wave electric fields in one rectangular lattice of a microplasma array with parameters similar to those in Fig. 4.

present at up to ωpe/
√

2; this is not consistent with the case
in Fig. 5, because a microplasma in this configuration is
not single but forms periodic structure that raises the upper
frequency limit [12].

In the lower part of Fig. 5, profiles in the density-
gradient case exhibit some features common to the slab
case, but clearly different points are also found. Electric
fields concentrated on the boundary of the microplasma
column at low frequencies, which was similar to the pro-
files in the slab case. However, as the frequency increased,
localized electric fields spread into the central region. Fur-
thermore, the lower limit of the wave propagation was
down to 8 GHz, which was approximately half that of the
slab case. These features are due to radial dependence of
ωpe; because a density gradient exists in the plasma column
and the characteristic length of its gradient exceeds the
width of the localized electric-field profile, electric fields
are present just outside the layer of “local” electron plasma
frequency.

This shrinking of the localized electric-field area
might give rise to change in the attenuation of transmitted
waves. At higher frequencies near ωpe, there exist propa-
gating modes with electric fields inside a microplasma col-
umn, and their wave energy penetrates through its outer re-
gion. Collisional damping and accumulated attenuation of
the waves along a microplasma chain would reduce trans-
mission efficiency.

3. Experimental Results
3.1 Band gap in lossy photonic crystals

We briefly review experiments on lossy photonic crys-
tals, which are described in detail in Ref. [14].

A columnar plasma was confined in a fine cold cath-
ode fluorescent lamp (CCFL) tube, i.e., a glass tube with
an outer diameter of 1.8 mm and thickness of 0.2 mm. The
discharge gas was an Ar and Ne mixture with Hg evapo-
rated from liquid mercury. A bipolar square-pulsed volt-
age was applied to the electrodes with an individual series
resistance of 47 kΩ, and the pulse width was set to 5 µs
with a repetition frequency of 30 kHz. The voltage ampli-
tude was 1.5-2.2 kV as a zero-to-peak value. That is, this
discharge was operated in a direct-current pulse mode. Ex-
perimental data for microwave transmission on microstrip
and coplanar lines with an adjacent CCFL array indicated
that the electron density in this columnar plasma was 0.4-
1.0 × 1013 cm−3 [14], which corresponds to ωpe/2π at 18-
28 GHz. The CCFLs in this experiment demonstrated here
were arranged between the conductors of a usual copla-
nar waveguide conductors with periodic length a = 3.0-
12.0 mm.

Transmittance, defined as the ratio of a transmitted-
wave power when plasmas were turned on to that when
they were turned off, showed a decrease resembling that
of ki, as shown in Fig. 2. However, a reduction of wave
attenuation was observed in a narrow band just below
the first band gap predicted theoretically. This was at-
tributed to wave-field profiles that change just below the
band gap [12], as mentioned in Sec. 2.1; in Fig. 3, ki de-
creases as the frequency increased, with a minimum value
just below the band gap around ωa/2πc = 0.29 because
the electric fields are less in the plasma region where the
waves attenuate via elastic collisions. It then jumped up
by one order of magnitude just above the band gap around
ωa/2πc = 0.32. In the experimental observations, a band
with such a huge ki is similar to the state in the band gap
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where wave propagation is forbidden. That is, this band-
gap material works as a band-pass filter that has a pass
band just below the band gap.

We point out, as a reference, the case of periodic
lossless dielectrics such as photonic crystals in the pho-
ton range; kr(ω) around the band gap is very similar to that
shown in Fig. 3, and two frequency bands are present at the
same kr(kra/2π = 0.5), so that the stored energy in the elec-
tromagnetic fields should differ in the two bands. Then,
above the band gap, the electric fields are localized in the
“air” where the permittivity is smaller, and below the band
gap the electric fields are localized in the dielectric where
the permittivity is larger. Inside the band gap region, the
density of states is zero since their presence is forbidden,
leading to a band-stop filter. That is, both the phenomenon
in lossy plasma periodic structures similar to a band-pass
filter and that in a lossless dielectric periodic structure sim-
ilar to a band-stop filter arise from the frequency band gap,
which gives rise to the change in the field profiles.

Another aspect of the measured frequency spectra of
transmitted waves leads to diagnostics of plasma parame-
ters through derivation of band diagrams by surveying pa-
rameters such as ne and electron temperature Te, which
mainly affects kr and ki, respectively; Te can be revealed
by estimation of elastic collision frequency in the Drude
model.

3.2 Dynamic waveguide of a microplasma
chain

In this experiment, we also used similar CCFLs to
construct a microplasma array, as described in Sec. 3.1.
Here we arranged CCFLs to form a 1D array; a very simple
“chain” structure.

To launch microwaves at one end of the chain and
to detect them at the other end, truncated microstrip lines
were set at both ends. A microwave generator (Agilent
Technology, 83624B) swept frequencies from 2 to 20 GHz
very slowly, in contrast to discharge voltage pulses at a
6.0-30 kHz repetition. Transmitted signals were detected
by a rectifier diode and recorded in a digital storage oscil-
loscope.

Figure 6 shows transmittance as a function of mi-
crowave frequency. Here the definition of transmittance
is similar to that in Sec. 3.1, so it indicates an enhancement
factor due to plasma generation. The frequency spectrum
of the transmittance shows a number of distinct and sharp
peaks at 5-17 GHz; each mode of microwave propagation
supported by the plasma chain was in a very narrow fre-
quency region. Wwithout plasma generation, microwaves
localized on the open edge of the microstrip line spread
only in a near-field mode, which does not propagate as
a far-field electromagnetic wave. That is, this enhance-
ment of transmitted waves is attributed to wave propaga-
tion along the chain of these microplasma columns.

Figure 7 displays typical time evolutions of trans-

Fig. 6 Schematic view of experimental setup and transmittance
spectra at 11 µs after discharge pulse. Bipolar voltage
with 2.4-µs-wide square pulse is used. Time evolution
of signals of transmitted waves is shown in Fig. 7.

Fig. 7 Time evolutions of signals of transmitted waves at two
wave frequencies. Experimental setup was similar to that
in Fig. 6.

mitted microwave signals with a discharge voltage sig-
nal. When microplasmas were not generated in CCFLs,
detected signals came from the excitation of near fields
on an open-ended microstrip line. When microplasmas
were turned on, the transmitted signals were enhanced by
a factor of 1-7, which indicates performance of a dynamic
waveguide alive only during plasma generation. The rising
phase of detected microwaves was during and just after the
discharge voltage pulses, which indicates that plasma gen-
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Fig. 8 Dispersion relation of surface waves on a layer with ne-gradient profile. The maximum ne is 1 × 1013 cm−3. (a) α1 = 3 × 106 cm−1,
(b) α1 = 2 × 104 cm−1, and (c) α1 = 4 × 101 cm−1. When we calculate the dispersion relation in (d), we assume a pressure term as
meβ

2ne, similar to the metal case, and α1 = 4 × 101 cm−1.

eration led to this signal enhancement. After the saturation
of the enhanced signals, they attenuated gradually, but their
attenuation rate and phase depend on wave frequency. This
is partly because ne changes in the afterglow phase after the
discharge voltage is turn off; the condition of wave propa-
gation on a flat band at each frequency varies one by one.
Furthermore, because ki is different in each flat band, the
evolution of transmittance varies with time in a different
manner.

Both experimental and numerical results strongly sug-
gest that the observed microwave propagation arose from
wave propagation on the LSP-like-mode chain. However,
there might be other influences which would come from
geometrical effects. In the experiment shown here, only
five CCFLs were set, and finite array effects should be con-
sidered. This finite size might also yield reflection back
and forth on each CCFL, which would lead to phenom-
ena like Fabry-Perot interference. Such other effects will
be discussed in the future, but in practical terms this mi-
crowave waveguide holds promise for forming a dynamic
and flexible waveguide, independent of its physical mech-
anism.

4. Discussion
Figures 4, 5, and 6 indicate that surface waves were

in a wider band than surface plasmon polaritons around

a small metallic sphere for ωpe/
√

3 < ω < ωpe/
√

2; on
a microplasma array, numerical results indicated that sur-
face waves propagated at a much lower frequency than
ωpe, and transmittance enhancement, possibly by surface
waves, was observed in the experiments. The numerical
analysis shown in Sec. 3.2 was based on a plasma equiv-
alent to a “cold” dielectric. Here we perform theoretical
analysis based on the fluid model [20, 28–31], that is, a
momentum balance equation including a term for electron
pressure pe.

The momentum balance equation of electrons in a gas
discharge is described as

mne(z)
due(z)

dt
= −ne(z)eE(z) − ∇pe(z)

−mne(z)ue(z)νm,
(2)

where t is the time, ue the electron fluid velocity, e the
charge of an electron, and E the electric field. z is set
along the gradient of ne density profile. In metal optics,
a similar description is referred to as the hydrodynamic
formulation. Each variable is divided into static and fluc-
tuating (wave-field) parts such as ne = ne0 + ne1, and the
fluctuating part was considered to derive surface-mode dis-
persion relations, although the first term of the right-hand
side in Eq. (2) is approximately replaced by −ne0(z)eE1 =

ε0mω2
pe0(z)E1. Parker et al. pointed out [20] that, if we

consider a “cold” dielectric which has only spatially con-
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tinuous change in dielectric constant with a decrease of
ne0(z) down to zero, the surface waves propagating along
its surface have a continuous frequency spectrum down to
much lower frequencies than ωpe, as shown in Figs. 4 and
5.

However, a gas-discharge plasma with finite electron
temperature is not the case, and we have to solve Eq. (2)
with Poisson’s equation, the continuity equation, and ad-
equate boundary conditions [29]. When we assume that a
plasma is in the state of 1D adiabatic compression, we can
set pe1(z) = 3kTene1(z), where k is the Boltzmann constant.
Following the previous analyses [28,29], we assume ne0(z)
profile of ω2

pe0(z) = ω2
pe0(−∞)(1 − cosh−2(α1z)), where α1

represents the surface diffuseness of the ne0(z) profile, and
1/α1 is approximately the width of the electron-density
gradient region in the plasma edge. That is, α1 directly
affects the first term of the right-hand side of Eq. (2), and
the derived dispersion relations are strongly deformed by
α1.

Figure 8 shows several cases of dispersion relations of
surface wave modes derived from Eq. (2). Here we show
the main mode saturating at ωsp = ωpe/

√
2, the first lowest

mode at a resonance frequency ω1, and the second lowest
mode at a resonance frequency ω3. When we reduce α1

and make the density profile softer, the frequency spectra
of the two lowest modes becomes by two orders of magni-
tude lower than ωsp, as shown in Figs. 8 (a)-(c).

When we considered sheath formation on the plasma
edge, the propagation mode at the very low frequencies in
Fig. 8 (c) should be ruled out, since the boundary condition
assumed in Ref. [29] in which polarization disappears at
the edge might not be true; for instance, if we consider pe-
riphery plasma with ne of 1 × 1012 cm−3, the sheath thick-
ness is tens of µm [32], which is one order of magnitude
smaller than the plasma radius. As a result, the lowest fre-
quency spectrum of the surface waves on a plasma in the
experiment would be around 1 GHz. If we adopt a pressure
term similar to that of metals, pe1(z) = meβ

2ne1(z), where
β2 = (3/5)v2F and vF is the Fermi velocity [27], the fre-
quency spectra of the two lowest modes remain in a range
similar to that of ωsp, as shown in Fig. 8 (d). That is, the
wide band of surface wave modes on the microplasma ar-
ray is attributed to a soft density gradient on the edge, ex-
cept for the sheath region and the pressure term in the mo-
mentum balance.

In Secs. 2.1 and 2.2 we described two distinct but dif-
ferent features of a microplasma array at ω < ωpe. Here
we briefly discuss their emerging conditions. The band
gap, which occurs around nωa/(2πc) ∼ 0.5, where n is the
refractive index, is clear when a has a range similar to that
of the wavelength and a significant spatial gap exists be-
tween microplasmas. On the other hand, plasmon chains
or flat bands in the dispersion relation are dominant when
the spatial gap between microplasmas is relatively small in
comparison with the wavelength and can be present at fre-
quencies much less than ωpe due to its large wavenumber.

Parameters used in Figs. 1 and 4 meet such requirements
for each case.

5. Summary
A microplasma array at frequencies less than ωpe

serves as a photonic crystal, which is a band-gap material
equivalent to a band-pass filter, and as a plasmon chain,
which becomes a dynamic waveguide. We drew a band di-
agram of a microplasma array in a 3D ω − kr − ki space,
which clarified the band-gap properties including a fre-
quency gap and attenuation discontinuity. Such features
have not been noted in the previous reports of (metal-
lic) photonic crystals. Plasmon chains composed of mi-
croplasma arrays functioned as a dynamic waveguide, and
their frequency spectra were fairly wide. Such a feature of
wave propagation mainly depends on soft ne gradient on
the edge. These microplasma array functions, verified in
this report, will lead to novel wave controller devices from
the microwave to the terahertz wave range.
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