# Plasma and Fusion Research

## Volume 3, S1083 (2008)

# Regular Articles

- National Institute for Fusion Science, Toki, Gifu 509-5292, Japan

### Abstract

A reliable method to evaluate the probability density function of escaping atom kinetic energies is required for analyzing neutral particle diagnostic data used to study the fast ion distribution function in fusion plasmas. In this paper, digital processing of solid state detector signals is proposed as an improvement of the simple histogram approach. Probability density function of kinetic energies of neutral particles escaping from plasma has been derived in a general form, taking into consideration the plasma ion energy distribution, electron capture and loss rates, superposition along the diagnostic sight line, and the magnetic surface geometry. A pseudorandom number generator has been realized to simulate a sample of escaping neutral particle energies for given plasma parameters and experimental conditions. Empirical probability density estimation code has been developed and tested to reconstruct the probability density function from simulated samples assuming Maxwellian ion energy distribution shapes for different temperatures and classical slowing down distributions with different slowing down times. The application of the developed probability density estimation code to the analysis of experimental data obtained by the novel Angular-Resolved Multi-Sightline Neutral Particle Analyzer has been studied to obtain the suprathermal particle distributions. The optimum bandwidth parameter selection algorithm has also been realized.

### Keywords

neutral particle analysis, ion distribution, statistical data processing, empirical probability density, kernel bandwidth selection

### Full Text

### References

- [1] P.R. Goncharov, J.F. Lyon, T. Ozaki et al., J. Plasma Fusion Res. SERIES 5, 159 (2002).
- [2] E.A. Veshchev, T. Ozaki, P.R. Goncharov et al., Rev. Sci. Instrum. 77, 10F129 (2006).
- [3] P.R. Goncharov, T. Ozaki and S. Sudo, Proc. 34th EPS Conf. Plasma Phys. P5.081 (2007).
- [4] R.K. Janev, C.D. Boley and D.E. Post, Nucl. Fusion 29, 2125 (1989).
- [5] J.G. Cordey and M.J. Houghton, Nucl. Fusion 13, 215 (1973).
- [6] M. Matsumoto and T. Nishimura, ACM Trans. Model. Comput. Simul. 8, 3 (1998).
- [7] S.P. Hirshman and J.C. Whitson, Phys. Fluids 26, 3553 (1983).
- [8] Yu.N. Dnestrovskij et al., Nucl.Fusion 19, 293 (1979).
- [9] Yu.S. Gordeev et al., JETP Lett. 25, 204 (1977).
- [10] R.K. Janev, W.D. Langer et al., Elementary Processes in Hydrogen-Helium Plasmas (Springer-Verlag, Berlin, 1987).
- [11] C.F. Barnett, ed., Atomic Data for Fusion, ORNL-6086 vol. 1 (Controlled Fusion Atomic Data Center, Oak Ridge, TN, 1990).
- [12] H. Hughes, D.E. Post, Journ. Comput. Phys. 28, 43 (1978).
- [13] A.W. Bowman and A. Azzalini, Applied smoothing techniques for data analysis (Clarendon, 1997).
- [14] M.P. Wand and M.C. Jones, Kernel Smoothing (Chapman and Hall, London, 1995).
- [15] M.S. Waterman and D.E. Whiteman, Int. J. Math. Educ. Sci. Technol. 9, 127 (1978).
- [16] L.N. Bolshev and N.V. Smirnov, Tables of mathematical statistics (Nauka, Moscow, 1983).
- [17] V.A. Epanechnikov, Theory Probab. Appl. 14, 153 (1969).
- [18] S.J. Sheather and M.C. Jones, J.R. Statist. Soc. B 53, 683 (1991).
- [19] V.C. Raykar and R. Duraiswami, Very fast optimal bandwidth selection for univariate kernel density estimation (University of Maryland, CS-TR-4774/UMIACS-TR2005-73, 2006).
- [20] M. Abramowitz and I.A. Stegun, eds., Handbook of mathematical functions (Dover, New York, 1972).
- [21] E.A. Veshchev, T. Ozaki, P.R. Goncharov et al., Plasma Fusion Res. 2, S1073 (2007).

This paper may be cited as follows:

Pavel R. GONCHAROV, Tetsuo OZAKI, Evgeny A. VESHCHEV and Shigeru SUDO, Plasma Fusion Res. 3, S1083 (2008).