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A reliable method to evaluate the probability density function of escaping atom kinetic energies is required
for analyzing neutral particle diagnostic data used to study the fast ion distribution function in fusion plasmas.
In this paper, digital processing of solid state detector signals is proposed as an improvement of the simple
histogram approach. Probability density function of kinetic energies of neutral particles escaping from plasma
has been derived in a general form, taking into consideration the plasma ion energy distribution, electron capture
and loss rates, superposition along the diagnostic sight line, and the magnetic surface geometry. A pseudorandom
number generator has been realized to simulate a sample of escaping neutral particle energies for given plasma
parameters and experimental conditions. Empirical probability density estimation code has been developed and
tested to reconstruct the probability density function from simulated samples assuming Maxwellian ion energy
distribution shapes for different temperatures and classical slowing down distributions with different slowing
down times. The application of the developed probability density estimation code to the analysis of experimental
data obtained by the novel Angular-Resolved Multi-Sightline Neutral Particle Analyzer has been studied to obtain
the suprathermal particle distributions. The optimum bandwidth parameter selection algorithm has also been
realized.
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1. Introduction
Measurements of kinetic energy distributions of neu-

tral atoms escaping from magnetically confined plasma in
controlled fusion experiments are performed to investigate
the ion component distribution function and its evolution
due to the application of various plasma heating schemes.
The ion distribution function reflects the kinetic effects,
the single particle confinement properties depending on the
particular magnetic configuration, the finite β effects such
as magnetohydrodynamics (MHD) induced fast ion losses,
radial electric field effects, etc. The nuclear fusion reac-
tion rate is determined by the ion distribution, and thus, its
studies at suprathermal energies near the rate coefficient
curve maximum are of primary importance. Advanced
neutral particle diagnostics based on solid state detectors
with high energy resolution, e.g. [1,2], are used to study the
suprathermal ion distribution function. Statistical data pro-
cessing is required to obtain a smooth normalized energy
probability density function (PDF) using random samples
of the measured values of particle energies [3].

2. Escaping Neutral Particle Energy
Distribution
Without loss of generality, we are considering mea-

surements of fast neutral hydrogen fluxes. The same for-
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malism applies to neutral helium in case of energetic α-
particle studies by means of charge exchange diagnostics.
The probability density function f (E) for kinetic ener-
gies of neutral H0 particles escaping from the plasma of a
magnetic confinement fusion (MCF) device and measured
along a line of sight tangent to a magnetic surface ρmin is
given by

f (E) = A exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1∫

ρmin

Q−(ρ̃)λ−1
mfp(E, ρ̃)dρ̃

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
1∫

ρmin

g (E, ρ)

×
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣Q+(ρ) exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩−
ρ∫

ρmin

Q+(ρ̃)λ−1
mfp(E, ρ̃)dρ̃

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
− Q−(ρ) exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩−
ρ∫

ρmin

Q−(ρ̃)λ−1
mfp(E, ρ̃)dρ̃

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ dρ, (1)

where A is the normalization constant calculated so that
+∞∫
0

f (E)dE = 1. (2)

The local source function for H0 atoms of energy E within
the plasma

g(E, ρ) = ni(ρ) fi(E, ρ)
∑

l

n(l)(ρ) 〈σv〉(l) (3)
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is expressed via the local plasma proton distribution
ni(ρ) fi(E, ρ) and the sum of frequencies of electron capture
by protons over all targets for the electron capture process
H+→H0. The knowledge of radial profiles of target den-
sities n(l)(ρ) and electron capture rate coefficients 〈σv〉(l) is
required.

The derivatives Q+(ρ) = dΛ/dρ > 0 and Q−(ρ) =
dΛ/dρ < 0 of the sight line distance Λ along the two in-
tervals between ρ = 1 and ρ = ρmin are obtained from
the known experiment geometry and the structure of mag-
netic surfaces ρ = const. Integration in (1) reflects the
fact that probabilities for particles that come from different
locations are additive. The neutral flux attenuation in the
plasma column is multiplicative and takes the form of Pois-
son exponents, where λmfp(E, ρ) is the local H0 mean free
path with respect to all electron loss reactions H0→H+.
From the practical viewpoint, it can be calculated as

λ−1
mfp(E, ρ) = ne(ρ)σs(E) (4)

using the approximate formula

σs (E, ρ) =
exp [S 1(E, ne, Te)]

E

×
⎡⎢⎢⎢⎢⎢⎢⎣1 + 1

ne

∑
j

n jZ j(Z j − 1) × S j (E, ne, Te)

⎤⎥⎥⎥⎥⎥⎥⎦
(5)

from [4] for neutral hydrogen stopping cross section in
MCF plasma. Radial profiles of electron density ne and
electron temperature Te are required. n j and Z j are impu-
rity densities and charges. The functions S 1(E, ne, Te) and
S j(E, ne, Te) were derived in [4] for a hydrogen plasma
containing He, C, O, and Fe impurities. Alternatively,
λmfp(E, ρ) can be calculated for any given plasma com-
position using the relevant cross section data.

3. Random Energy Samples
Ideally, the passive diagnostic data is an array

(E1, . . . , EN) of energies of escaped neutral particles mea-
sured along a certain observation direction, and N is the
total number of particles collected during a certain time
interval. This array is a sample of realizations of the ran-
dom variable E distributed according to equation (1). Such
form of data is achievable with solid state detectors using
pulse height analysis (PHA) techniques, while the other
analyzers, e.g., �E || �B ones, intrinsically form a histogram
of the incoming particle energies over a certain number of
subintervals called energy channels. Histogramic data rep-
resentation is often used in solid state detector digital sig-
nal processing as well; however, it is possible to collect
“raw” data, i.e., pulse height values, directly from a PHA
mode analog to digital converter. Technical details may be
found in [1, 2].

The formulation of the problem considered here is to
obtain an estimate f (∗)(E) of the unknown exact probability
density function f (E) of neutral particle energies from the

experimental data. The sought function preferably should
satisfy a specified precision criterion. The obtained PDF
estimate is then to be used to reconstruct the ion distribu-
tion for further analysis.

Two typical ion energy distribution laws have been
used in the numerical simulation of escaped neutral atom
energies, namely, (a) Maxwellian distribution with ion
temperature Ti

fi(E) =
2√
π

1
Ti

√
E
Ti

exp(−E/Ti), (6)

Fi(E) =
2√
π
γ

(
3
2
,

E
Ti

)
, (7)

where γ(z, x) =
∫ x

0 tz−1e−tdt is the lower incomplete
gamma function; and (b) the classical slowing down dis-
tribution for a delta-like fast ion source function

S (v − v0) =
S 0

4πv2
exp{−(v − v0)2/ε2}

ε
√
π

, (8)

fi(v) =
S 0

8π
τs

v3 + v3c

[
erf

(
v∗(v, t) − v0
ε

)

− erf
(
v − v0
ε

)]
,

(9)
where the slowing down time

τs =
3mpT 3/2

e

4
√

2πnee4Λm1/2
e

, (10)

the critical velocity

v3c =
3
√

2πT 3/2
e

2mpm1/2
e

, (11)

Λ is the Coulomb logarithm, and as shown in [5],

v∗(v, t) =
[(
v3 + v3c

)
e3t/τs − v3c

]1/3
. (12)

The ion velocity v =
√

2E/mp, v0 is the injection ve-
locity corresponding to the injection energy E0, the values
S 0 and ε in (8) determine the source rate and peak width,
respectively, and t is the time since the commencement of
the fast particle source action.

4. Numerical Experiment
Assuming a predefined theoretical ion energy PDF

fi(E), one can use (1)-(5) to calculate the charge exchange
atom energy PDF f (E) and perform a numerical experi-
ment by generating a sample of escaped atom energies for
given plasma parameters and experimental conditions. We
apply the inverse cumulative distribution function (CDF)
approach. First, a sample of N pseudorandom numbers
(u1, . . . , uN) uniformly distributed within the (0,1) interval
is generated using an algorithm provided in [6]. Then, the
energy values are calculated as solutions of the equation

F(E j) = u j, (13)
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where

F(E) =
∫ E

0
f (Ẽ)dẼ (14)

is the CDF. These simulation results can be supplied as in-
put data for the PDF estimation procedure to test its perfor-
mance, since the original exact f (E) used in the simulation
is known.

Numerical experiments have been performed assum-
ing Angular-Resolved Multi-Sightline (ARMS) Neutral
Particle Analyzer (NPA) [2] measurement geometry for
one of its lines of sight as depicted in Fig. 1. Large He-
lical Device (LHD) magnetic surface structure was used,
obtained by Variational Moments Equilibrium Code cal-
culation of 3D MHD equilibrium assuming nested flux
surfaces [7]. Figure 1 (a) shows effective radius isolines
ρ = const., i.e., the magnetic surfaces, in the vertical plane
containing the diagnostic sight line. Figure 1 (b) shows ρ
values versus the distance Λ along the observation direc-
tion and corresponding positive and negative branches of
the generalized Abel integral kernel for this sight line and
for the assumed MHD equilibrium.

Fig. 1 (a) Cross section of nested LHD magnetic surfaces at
Rax = 3.60 m by vertical plane containing ARMS NPA
line of sight #18; (b) positive and negative branches of
general Abel integral for ARMS NPA sight line #18.

The following functions were used to describe ra-
dial profiles of electron density ne(ρ), electron temperature
Te(ρ), and ion temperature Ti(ρ) in case of Maxwell distri-
bution

ne(ρ) = ne(0) (1 − ρm)n , (15)

Te(ρ) = Te(0) (1 − ρp)q , (16)

Ti(ρ) = Ti(0) (1 − ρu)v , (17)

with positive superscripts. A simple lower-bound estimate
of the background neutral hydrogen density can be ob-
tained from ionization balance as described in [8]

n0(ρ)
ne(ρ)

=
〈σrecv〉

〈σeiv〉 + 〈σiiv〉 , (18)

with radiative recombination rate 〈σrecv〉 given in [9], and
electron impact ionization rate 〈σeiv〉 and ion impact ion-
ization rate 〈σiiv〉 from [10, 11]. A more sophisticated ap-
proach to estimate n0(ρ) requires Monte Carlo modeling
analogous to [12] including full 3D tracing of neutral par-
ticle trajectories.

Proton-hydrogen charge exchange cross section was
taken from [11] to calculate the local source function of
H0 atoms. The attenuation of neutral hydrogen flux was
calculated using (5). Figure 2 illustrates the stopping cross
section σs(E, ρ) calculation for two cases, namely, for pure
hydrogen plasma with unit effective plasma ion charge
Zeff = 1.0 and for Zeff = 1.5, assuming the impurity density
ratio to be He:C:O:Fe = 5.00:1.50:0.50:0.05 as suggested
in [4].

Figure 3 (a) shows radial profiles of plasma parame-
ters used as input data to simulate escaping neutral particle
spectra in case of Maxwellian plasma ion distribution. As-
sumed Maxwellian proton energy PDF for two different
Ti(0) values is shown in Fig. 3 (b). Figure 3 (c) shows the
resultant PDF for kinetic energies of H0 atoms measured
along the specified observation direction.

Fig. 2 Stopping cross section for neutral hydrogen in pure hy-
drogen plasma and in presence of impurities.
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Fig. 3 (a) Input data for escaping H0 energy distribution calcu-
lation in case of Maxwellian ion distribution for two dif-
ferent ion temperatures; (b) Maxwellian ion energy PDF
in the plasma core for two temperatures; (c) calculated
escaping H0 energy PDF.

Figure 4 (a) shows radial profiles of plasma parame-
ters used as input data to simulate escaping neutral particle
spectra in case of the classical slowing down distribution
of plasma ions. Assumed proton energy PDF at t = 0.8 s is
shown in Fig. 4 (b) for injection energy E0 = 150 keV and
two different pairs of the target plasma ne(0) and Te(0) val-
ues, i.e., for two different slowing down time values τs =

1 s and τs = 0.01 s. Figure 4 (c) shows the resultant PDF
for kinetic energies of H0 atoms measured along the spec-
ified observation direction in these two cases. Histograms
of the corresponding pseudorandom number samples
governed by these neutral particle energy PDFs are shown
in Fig. 5 (a) for the Maxwellian case and in Fig. 6 (a) for
the case of the classical slowing down distribution.

Fig. 4 (a) Input data for escaping H0 energy distribution calcu-
lation in case of classical slowing down ion distribution
for two different slowing down times; (b) ion energy PDF
in the plasma core for two different slowing down times;
(c) calculated escaping H0 energy PDF.

5. Data Processing Method
As an improvement of the neutral particle diagnostic

data analysis, we have applied the probability density es-
timation using kernel smoothing techniques, e.g., [13,14].
Given a sample of N random energy values, first consider
the empirical PDF defined in [15]

f (e)(E) =
F(e)(E + h) − F(e)(E − h)

2 h
, h > 0, (19)

which is in fact the central difference derivative of the em-
pirical CDF

F(e)(E) =
#{E j : E j ≤ E}

N
, (20)
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Fig. 5 (a) Histograms of pseudorandom numbers distributed as
energies of escaping neutral atoms in case of Maxwellian
ion distribution for two different ion temperatures; (b)
Gaussian kernel PDF for H0 energies calculated from the
simulated random samples.

also known as Kaplan-Meier cumulative distribution func-
tion. To describe its accuracy with respect to the un-
known exact CDF F(E), Kolmogorov statistic DN =

sup
E
|F(e)(E) − F(E)| and its tabulated asymptotic distribu-

tion lim
N→∞ P(DN

√
N ≤ y) = K(y), y > 0 are used [16].

Next, consider a generalization of formula (19) called
kernel PDF estimate, written as

f (K)(E) =
1

Nh

N∑
j=1

K
(

E − E j

h

)
, h > 0, (21)

which is determined by the kernel function K(z) and the
kernel bandwidth h. Formula (19) is a particular case of
(21), when K(z) = I(−1,1)(z), and the rectangular function
I(−1,1)(z) equals unity within (−1, 1) interval and equals
zero outside. The performance criterion of the kernel PDF
estimation, also referred to as Parzen window method with
respect to the unknown exact PDF f (E), is the value of the
mean integrated squared error

MISE
(
f (K), f

)
=

〈∫ +∞

0

[
f (K) (E) − f (E)

]2
dE

〉
,

(22)

where the averaging is performed over different samples of
N realizations (E1, . . . , EN), and its “asymptote” for N 	 1

Fig. 6 (a) Histograms of pseudorandom numbers distributed as
energies of escaping neutral atoms in case of classical
slowing down ion distribution for two different slowing
down times; (b) Gaussian kernel PDF for H0 energies cal-
culated from the simulated random samples.

(large sample approximation)

AMISE
(
f (K), f

)
=

c1

Nh
+

c2c2
3h4

4
, (23)

where c1 =
∫

K2(z)dz, c2 =
∫

( f ′′(z))2 dz, and c3 =∫
z2K(z)dz. The optimum kernel derived in [17] is

Epanechnikov function K(z) = 3
4

(
1 − z2

)
I(−1,1) (z). How-

ever, it is emphasized [13,14] that the kernel function shape
has a small influence on the method performance, while
the bandwidth parameter h is more important. Therefore,
Gaussian kernel

K(z) =
1√
2π

e−z2/2 (24)

has been used, since it has a continuous derivative.
A reliable practical method for optimum h selection

was proposed in [18] and revisited recently in [19]. The
bandwidth is obtained by solving the equation

h =
(

1
2
√
πNφ4(η(h))

)1/5

, (25)

where the function φr is expressed via kernel derivative

K(r)(z) = (−1)rHer(z)K(z) (26)
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Fig. 7 (a) Background plasma parameters and ECH/ICH/NBI
heating time diagram; (b) experimental histogram of es-
caping H0 energies measured by ARMS NPA along sight
line #2; (c) calculated H0 energy PDF with Gaussian ker-
nel and AMISE-optimal smoothing parameter.

as follows

φr(h) =
1

N(N − 1)h(r+1)

N∑
i=1

N∑
j=1

K(r)
(

Ei − E j

h

)
.

(27)

Her(z) designates rth degree modified Hermite polynomial
[20]. The function

η(h) =
⎛⎜⎜⎜⎜⎝−6
√

2φ4(a)
φ6(b)

⎞⎟⎟⎟⎟⎠1/7

h5/7 (28)

depends on the values

a =
⎛⎜⎜⎜⎜⎝16
√

2
5N

⎞⎟⎟⎟⎟⎠1/7

σ̂ and b =
⎛⎜⎜⎜⎜⎝480

√
2

105N

⎞⎟⎟⎟⎟⎠1/9

σ̂, (29)

Fig. 8 (a) Background plasma parameters and ECH/NBI heating
time diagram; (b) experimental histogram of escaping H0

energies measured by ARMS NPA along sight line #2;
(c) calculated H0 energy PDF with Gaussian kernel and
AMISE-optimal smoothing parameter.

where

σ̂ =

√√√
1

N − 1

N∑
i=1

(
Ei − Ē

)2
, and Ē =

1
N

N∑
i=1

Ei. (30)

Direct implementation of formula (27) is slow. An approx-
imate fast calculation technique to the required precision is
given in [19].

These methods have been tested by constructing the
kernel probability density function from the generated
pseudorandom number samples assuming Maxwellian ion
energy distribution shapes for different temperatures and
classical slowing down distributions with different slowing
down times. The test results of these numerical experi-
ments are shown in Figs. 5 (b) and 6 (b).

Application of the methods described above to the
analysis of passive chord-integrated experimental data ob-
tained with the Angular-Resolved Multi-Sightline Neutral
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Particle Analyzer on Large Helical Device is illustrated in
Figs. 7 and 8. Figures 7 (a) and 8 (a) summarize the experi-
mental conditions and heating time diagrams for H/Ar tar-
get plasma heated by ICH and parallel NBI and for H/He
target plasma heated by parallel NBI alone. The experi-
mental setup is explained in detail in [2, 21]. Experimen-
tally obtained histograms of fast neutral particles measured
by ARMS NPA chord #2 during the shaded time intervals
are shown in Figs. 7 (b) and 8 (b). These histograms were
automatically calculated by Clear Pulse Model 1219 CA-
MAC PHA module used for digital processing of detec-
tor signals formed by a resistive feedback charge sensitive
preamplifier and a shaping amplifier [2].

Figures 7 (c) and 8 (c) illustrate the probability density
functions for energetic neutral particles from suprathermal
distribution tails above 70 and 30 keV, respectively, ob-
tained by Gaussian kernel smoothing (21) with AMISE op-
timal bandwidth parameter calculated using (25)-(30).

It should be noted that the obtained f (K)(E) is a nor-
malized, smooth continuous function, which is an approx-
imation to the unknown true PDF for neutral particle en-
ergies. The approximation criterion is the minimization
of AMISE (23) by choosing the kernel bandwidth param-
eter. This approximation is based on the experimentally
obtained random sample of escaped particle energies mea-
sured using a solid state detector in combination with a
charge sensitive amplifier and an optional pulse shaping
amplifier. Thus, the method inherits the energy resolution
properties of the pulse processing electronic circuit. Dig-
ital processing of charge sensitive amplifier output signal
might be preferable.

6. Summary
The goal of neutral particle diagnostics is to obtain

information about the ion distribution function and espe-
cially its substantially non-Maxwellian high energy “tail.”
This is important for ion heating and confinement stud-
ies. Such measurements are not direct. The relationship
between the ion distribution function and the probability
density for escaping charge-exchange neutral particle ki-
netic energies has been derived in a general form for chord-
integral passive measurements from a magnetic confine-
ment fusion plasma column. A calculation method has
been realized that has a predictive force to simulate the ex-
perimentally measurable random samples of escaping neu-
tral atom energies for any given plasma ion distribution,
electron density and temperature profiles, plasma composi-
tion, and experimental geometry. This is a “direct calcula-
tion” to obtain random escaping atom energy sample from
the known plasma ion distribution. A method to solve the
“inverse problem” has also been proposed, which is based
on Gaussian kernel smoothing with automatic choice of

AMISE-optimal bandwidth parameter. Thus, neutral atom
energy probability density function is obtained from the
experimental random samples. This PDF for escaped neu-
tral atom energies can then be used to study the ion distri-
bution function within the plasma. The proposed method
is applicable for diagnostics based on solid state detectors.
“Raw” data obtained directly from PHA ADC is required
to obtain samples of particle energies rather than the less
informative, automatically built histogram PDF estimators.
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