[Table of Contents]

Plasma and Fusion Research

Volume 2, 010 (2007)

Regular Articles


Numerical Method for the Stability Analysis of Ideal MHD Modes with a Wide Range of Toroidal Mode Numbers in Tokamaks
Nobuyuki AIBA, Shinji TOKUDA, Takaaki FUJITA, Takahisa OZEKI, Ming S. CHU1), Philip B. SNYDER1) and Howard R. WILSON2)
Japan Atomic Energy Agency
1)
General Atomics
2)
Department of Physics, University of York
(Received 30 November 2006 / Accepted 19 January 2007 / Published 25 April 2007)

Abstract

A numerical method for the stability analysis of ideal MHD modes is devised by using a physical model based on the two-dimensional Newcomb equation in combination with the conventional ideal MHD model. The MARG2D code based on this numerical method is able to analyze the stability of ideal MHD modes with a wide range of toroidal mode numbers. The validity of the MARG2D code has been confirmed through benchmarking tests using the DCON code for the low toroidal mode number MHD mode analysis, and tests using the ELITE code for intermediate to high toroidal mode number mode analysis. By using the MARG2D code, the MHD stability property of JT-60SA, the complemental device of ITER, is investigated with a focus on the effect of the plasma shape.


Keywords

tokamak, ideal MHD stability, ELMs, Newcomb equation

DOI: 10.1585/pfr.2.010


References

  • [1] T. Ozeki et al., Nucl. Fusion 35, 861 (1995).
  • [2] M.S. Chu, M.S. Chance, A.H. Glasser and M. Okabayashi, Nucl. Fusion 43, 441 (2003).
  • [3] J.W. Connor, R.J. Hastie, H.R. Wilson and R.L. Miller, Phys. Plasmas 5, 2687 (1998).
  • [4] R.C. Grimm, R.L. Dewar and J. Manickam, J. Comput. Phys. 49, 94 (1983).
  • [5] S. Tokuda and T. Watanabe, Phys. Plasmas 6, 3012 (1999).
  • [6] N. Aiba, S. Tokuda and T. Ishizawa, J. Plasma Phys. 72, 1127 (2006).
  • [7] H.R. Wilson, P.B. Snyder, R.L. Miller and G.T.A. Huysmans, Phys. Plasmas 9, 1277 (2002).
  • [8] P.B. Snyder et al., Phys. Plasmas 9, 2037 (2002).
  • [9] A.B. Mikhailovskii, G.T.A. Huysmans, W.O.K. Kerner and S.E. Sharapov, Plasma Phys. Rep. 23, 844 (1997).
  • [10] N. Aiba, S. Tokuda, T. Ishizawa and M. Okamoto, Comput. Phys. Commun. 175, 269 (2006).
  • [11] N. Aiba, S. Tokuda, T. Takizuka, G. Kurita and T. Ozeki, Nucl. Fusion 47, 297 (2007).
  • [12] N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba and N. Oyama, in Proc. 21st IAEA Fusion Energy Conf., (Chengdu, 2006)(Vienna, IAEA) CDROM le TH/4-1 and http://www-naweb.iaea.org/napc/physics/FEC/FEC2006/html/index.html.
  • [13] A.H. Glasser and M.S. Chance, Bull. Am. Phys. Soc., 42, 1848 (1997).
  • [14] M. Kikuchi, JA-EU satellite tokamak working group, and JT-60SA design team, in Proc. 21st IAEA Fusion Energy Conf., (Chengdu, 2006) (Vienna, IAEA) CDROM file FT/2-5 and http://www-naweb.iaea.org/napc/physics/FEC/FEC2006/html/index.html.
  • [15] M.N. Bussac, R. Pellat, D. Edery and J.L. Soule, Phys. Rev. Lett. 35, 1638 (1975).
  • [16] J.P. Freidberg, Ideal Magnetohydrodynamics (Plenum Press, New York, 1987).
  • [17] N. Aiba, S. Tokuda, T. Ishizawa and M. Okamoto, Plasma Phys. Control. Fusion 46, 1699 (2004).
  • [18] M. Azumi et al., in Proc. 4th Int. Symp. on Comput. Methods Applied Sci. Engineering, Paris (North-Holland, Amsterdam, 1980) p.335.
  • [19] R. Gruber and J. Rappaz, Finite Elements Methods in Linear Ideal Magnetohydrodynamics (Berlin: Springer, 1985).
  • [20] R.L. Miller and J.W. Van Dam, Nucl. Fusion 27, 2101 (1987).
  • [21] M. Azumi et al., in Proc. 6th Int. Conf. Plasma Phys., Lausanne (CEC, Brussels, 1984) Vol.1, p.200.

This paper may be cited as follows:

Nobuyuki AIBA, Shinji TOKUDA, Takaaki FUJITA, Takahisa OZEKI, Ming S. CHU, Philip B. SNYDER and Howard R. WILSON, Plasma Fusion Res. 2, 010 (2007).