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A numerical method for the stability analysis of ideal MHD modes is devised by using a physical model
based on the two-dimensional Newcomb equation in combination with the conventional ideal MHD model. The
MARG2D code based on this numerical method is able to analyze the stability of ideal MHD modes with a wide
range of toroidal mode numbers. The validity of the MARG2D code has been confirmed through benchmarking
tests using the DCON code for the low toroidal mode number MHD mode analysis, and tests using the ELITE
code for intermediate to high toroidal mode number mode analysis. By using the MARG2D code, the MHD
stability property of JT-60SA, the complemental device of ITER, is investigated with a focus on the effect of the
plasma shape.
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1. Introduction
Magnetohydrodynamic (MHD) instability has be-

come considered as one of key issues for the high perfor-
mance operation in tokamaks. Low-n, n being the toroidal
mode number, external (free boundary) MHD modes of-
ten limit plasma performance, and many authors have in-
vestigated the stability of these modes, for example in
Refs. [1, 2]. In addition, intermediate to high-n external
modes are considered to be one of the causes of edge lo-
calized modes (ELMs) which constrain the maximum pres-
sure gradient in the pedestal at the tokamak edge region [3].

Numerical codes for estimating the linear growth rate
γ of low-n ideal MHD modes in tokamaks have been de-
veloped. However, since there is the accumulating point
of the continuous spectrum at the marginal stability point
(γ = 0), it is difficult to identify the stability boundary
explicitly using these codes. The PEST-II code was devel-
oped to identify the stability boundary by making the lower
bound of the continuum a nonzero value in the stable re-
gion [4]. Recently, an innovative physical model to iden-
tify the stability boundary of ideal MHD modes in toka-
maks has been devised [5]. With this model, the spectra
of the eigenvalue problem are comprised of only the real
and denumerable eigenvalues without continua. On the ba-
sis of this model, the MARG2D code has been developed.
This code is able to identify the stability boundary of low-n
ideal MHD modes by estimating the vacuum energy inte-
gral with the Green function method [6].
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For the stability analysis of intermediate to high-n
MHD modes of tokamak edge plasmas, some numerical
codes have been developed recently [7–9]. These are ap-
plied to the numerical analysis of ELMy H-mode plas-
mas in existing devices and in ITER, and these analyses
have revealed that type-I ELMs are induced by ideal MHD
modes destabilizing near the plasma surface. To analyze
the stability of tokamak edge plasmas using MARG2D, the
physical model of MARG2D is extended to the vacuum re-
gion with the vector potential method [10].

As an analysis of edge MHD stability using
MARG2D, we have reported the effect of the plasma shape
at the top or the bottom of the equilibrium on the edge
MHD stability [11]. In Ref. [11], we have shown that a bal-
looning mode and a peeling-ballooning mode are stabilized
by sharpening the top or the bottom of the outermost mag-
netic surface, though a current-driven kink (peeling) mode
is hardly stabilized. This stabilizing effect is caused by
multiplying the local shear near the top or the bottom of the
plasma, which stabilizes mainly the pressure-driven bal-
looning mode. These results have revealed that the plasma
pressure at the pedestal can improve by sharpening the out-
ermost surface.

The MARG2D code based on the physical model
with the two-dimensional Newcomb equation can pre-
cisely identify the stability boundary of ideal MHD modes,
but the eigenvalues computed by MARG2D correspond
neither to γ nor to the frequencies of ideal MHD pertur-
bations. To overcome this weakness, the plasma inertia
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considered in the conventional ideal MHD model under the
incompressible assumption is implemented in MARG2D.
By solving the eigenvalue problem with this plasma iner-
tia after identifying whether the plasma is stable or un-
stable by using the model based on the Newcomb equa-
tion, a compressionless growth rate can be estimated. This
numerical method has an advantage not only for numeri-
cal predictions of the plasma performance in existing and
future experiments but also for integrated simulations re-
alized by combining MARG2D with a tokamak transport
code [12].

This paper is organized as follows. In Sec. 2, the de-
velopment of the MARG2D code for estimating a com-
pressionless growth rate is described. Section 3 describes
the results of benchmarking tests of the MARG2D code
by using the DCON code [13] by identifying the stability
boundary of low-n MHD modes, and the results of tests by
using the ELITE code [7, 8] by analyzing the intermediate
to high-n MHD mode stability. In Sec. 4, the MHD stabil-
ity property in JT-60SA [14], which is now under design
as the complemental device of ITER, is investigated using
MARG2D, focusing on an effect of the plasma shape. Sec-
tion 5 presents a summary of this work.

2. Development of the Numerical
Method of the MARG2D Code
In this section, we introduce the development of the

numerical method used in the MARG2D code utilizing the
compressionless ideal MHD model. We first define the
straight field line flux coordinate system (r, θ, φ) as

r2(ψ) = 2R0

∫ ψ

0

q
F

dψ, (1)

B · ∇θ
B · ∇φ = q(ψ), (2)

where ψ is the poloidal magnetic flux, F is the toroidal
magnetic function, R0 is the major radius, and q is the
safety factor [15]. In this coordinate system, the Jacobian√
g(r, θ) is given as

√
g(r, θ) =

rR2

R0
, (3)

where R is the coordinate in the cylindrical coordinate sys-
tem (R, Z, φ). The MARG2D code solves numerically the
eigenvalue problem associated with the two-dimensional
Newcomb equation in this coordinate system [5]:

NX(r) = −λRX(r). (4)

HereN is the Newcomb operator, λ is the eigenvalue, R is
a diagonal operator whose components are Rm,m ∝ (m/q −
n)2, m is the poloidal mode number, n is the toroidal mode

number, X(r) is the vector function defined as

X(r) = {X−L f (r), . . . , XL f (r)}t, (5)

ξ · ∇r = X(r, θ) =
L f∑

l=−L f

Xl(r) exp(ilθ), (6)

ξ is the plasma displacement with n; L f is the truncated
poloidal mode number, and i is the complex unit. By in-
troducing the solenoidal field CV (∇ · CV = 0) and the
unknown vector ξV to express the perturbed magnetic field
in the vacuum QV as

QV = ∇ × AV, AV = ξV × CV, (7)

the Newcomb operator in Eq. (4) can be extended to the
vacuum region, and a broad n range of external mode anal-
yses can be realized using the MARG2D code [10].

By artificially choosing the weight function of the
right hand side of Eq. (4) and imposing the natural bound-
ary condition for the resonant harmonic at each rational
surface, the spectra λ of Eq. (4) are comprised of real and
denumerable eigenvalues without continuous spectra. This
enables to identify explicitly the stability of the plasma
with the sign of the minimum eigenvalue, but the eigenval-
ues correspond neither to γ nor to the frequencies of ideal
MHD perturbations. However, if we already know that the
plasma is unstable, the linear growth rates of ideal MHD
modes can be estimated numerically based on the conven-
tional ideal MHD model, because an ideal MHD spectrum
contains continua in the stable side (γ2 ≤ 0) [16].

To realize both the identification of the stability
boundary and the estimation of the linear growth rates us-
ing the single MHD spectrum code, we implement the
physical plasma inertia under the assumption of incom-
pressibility in MARG2D instead of the weight function in
Eq. (4). The kinetic energy in the ideal MHD model can be
written as

K =
γ2

2

∫
ρ|ξ|2 √

g(r, θ)drdθdφ, (8)

where ρ is the plasma density. We assume that the equi-
librium is axisymmetric, the plasma density is constant as
ρ = ρ0, and the plasma is incompressible. With these as-
sumptions, K can be given by

K =πρ0γ
2
IM

∫ (
rR2

R0|∇r|2 |X(r, θ)|2

+
r|∇r|2R4

R3
0

|V(r, θ) − rβr,θX(r, θ)|2
 drdθ, (9)

V(r, θ) = r

(
ξ · ∇θ − 1

q
ξ · ∇φ,

)
, (10)

where γIM is the compressionless growth rate, and βr,θ is
the measure of nonorthogonality of the (r, θ, φ) coordinate
system defined as

βr,θ(r, θ) =
∇r · ∇θ
|∇r|2 . (11)
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Since the variable V(r, θ) can be solved analytically as a
function of X(r) in the MARG2D formulation [5], K in
Eq. (9) can be expressed in the quadratic form of X(r) as

K = 2π2ρ0γ
2
IM

∫ a

0
〈X|K|X〉dr, (12)

where a is the plasma minor radius, and the bracket of vec-
tors a and c and a matrix B, 〈a|B|c〉, is defined as

〈a|B|c〉 = atBc =
∑

j,k

a jB j,kck. (13)

Since the plasma potential energy Wp has also been ex-
pressed in the quadratic form of X(r) [5], the stationary
condition of the functional

W[X] = Wp + γ
2
IMK (14)

for arbitrary variations of X(r) yields an eigenvalue prob-
lem:

NX(r) = γ2
IMKX(r). (15)

MARG2D can estimate the compressionless growth rate
γIM by solving this eigenvalue problem with the continu-
ous condition for each Xl(r) at rational surfaces after iden-
tifying whether the plasma is stable or unstable by solving
Eq. (4).

3. Benchmarking Test of MARG2D
In this section, the results of benchmarking tests of

the MARG2D code are shown. Benchmarking tests of the
low-n mode analysis in an up-down symmetric equilibrium
have previously been executed in Refs. [10, 17]. Hence, in
Subsec. 3.1, we first compare the stability boundaries of
n = 1, 2, 3 external MHD modes identified by using the
MARG2D and the DCON codes [13] in an up-down asym-
metric equilibrium. Next, in Subsec. 3.2, the stability of
5 ≤ n ≤ 100 ideal MHD modes in an up-down symmet-
ric equilibrium is analyzed using the MARG2D and the
ELITE codes as the benchmarking test of intermediate to
high-n mode analysis.

3.1 Benchmarking for identifying the stabil-
ity boundary of low-n MHD modes

As the benchmarking test for identifying the stability
boundary of low-n MHD modes, we use MARG2D and
DCON to investigate the dependence of the βN limit on
the position of the conducting wall surrounding the plasma
d/a, where βN is the normalized beta value defined as
βN ≡ 100 βtaBt/Ip, βt[%] is the toroidal beta, Bt[T ] is the
toroidal magnetic field on the axis, Ip[MA] is the plasma
current, d is the radius of the wall defined as

2d = Rw(Z = 0)|out − Rw(Z = 0)|in, (16)

Rw is the R coordinate of the wall on the (R, Z) plane, and
subscript in (out) indicates the position inside (outside) of

Fig. 1 (a) Contour of the poloidal magnetic flux ψ = const. of
βN = 5.5 equilibrium. (b) Profiles of pressure p (black)
and safety factor q (gray) when βN = 3.0 (solid line), 5.5
(broken line), and 7.5 (dotted line), respectively.

Fig. 2 Dependence of the βN limit on the wall position d/a.
Each dependence of the βN limit restricted by the n =
1, 2, 3 MHD modes stability estimated with MARG2D is
almost identical to that calculated with DCON.

the magnetic axis. The distance from the plasma surface to
the wall is fixed as d − a. A series of equilibria is obtained
by solving the Grad-Shafranov equation numerically using
the MEUDAS equilibrium code [18]. When the βN value of
the equilibrium is changed from 3.0 to 7.5, the shape of the
outermost closed surface and the safety factor at the plasma
edge qedge are fixed as R0[m] = 3.24, a[m] = 0.84, and
qedge = 4.58. The contours of ψ = const. (magnetic sur-
faces) when βN = 5.5, and the profiles of plasma pressure
p and q when βN = 3.0, 5.5, and 7.5 are shown in Fig. 1.
The transverse value in Fig. 1 (b) is defined as ρs =

√
ψN,

where ψN is a normalized poloidal flux as ψN = 0 at the
axis and ψN = 1 at the surface. MARG2D and DCON
identify the stability boundaries of n = 1, 2, 3 MHD modes
in this series of equilibria.

Figure 2 shows the dependence of the βN limit on d/a.
These dependences revealed by MARG2D and DCON
are almost identical to each other. Unfortunately, since
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Fig. 3 (a) Contour of the poloidal magnetic flux ψ = constant.
(b) Profiles of pressure p (black) and safety factor q
(gray), respectively.

the DCON code used in this benchmarking (ver. 3.2) can-
not output an eigenfunction, we cannot compare the ra-
dial structure of the eigenfunction with that determined
by MARG2D. However, in an up-down symmetric equi-
librium, the benchmarking tests between the MARG2D
and the ERATOJ codes [19] have been executed in Refs.
[10, 17], and the radial structures of the marginally sta-
ble eigenfunctions have been identified as almost identi-
cal. These results demonstrate that the stability boundary
of low-n MHD modes identified by means of MARG2D is
accurate.

3.2 Benchmarking for the stability analysis
of intermediate to high-n MHD modes

As the benchmarking test of intermediate to high-n
mode stability analysis, the compressionless growth rates
γIM of 5 ≤ n ≤ 100 ideal MHD modes are calculated us-
ing the MARG2D and the ELITE codes [7, 8]. The equi-
librium used in this benchmarking is calculated using the
TOQ code [20]. Figure 3 shows the contour of ψ = const.,
and the profiles of p and q. The equilibrium quantities are
R0[m] = 3.00, a[m] = 0.97, βN = 2.83, Ip[MA] = 2.70,
and Bt[T] = 3.00.

The results of the stability analysis of 5 ≤ n ≤ 100
MHD modes are shown in Fig. 4. Figure 4 (a) shows the n
dependence of γIM normalized with the toroidal Alfvén fre-
quency on the magnetic axis ωA. The agreement between
the results of MARG2D and ELITE is quite close, and
the radial structures of the most unstable eigenfunction ob-
tained using MARG2D (Fig. 4 (b)) and ELITE (Fig. 4 (c)),
whose n number is 10, are almost identical to each other.
These structures consist of a combination of a peeling com-
ponent peaking at the plasma surface and a ballooning
component whose envelope maximum is near ρs = 0.92.

These results shown in this section confirm that the
MARG2D code can determine the stability of the wide n
range of ideal MHD modes with a high level of accuracy.

Fig. 4 (a) Dependence of γIM/ωA on n calculated with
MARG2D (solid line) and ELITE (broken line). The
agreement between both codes is quite close. Radial
structures of the most unstable eigenfunction whose n =
10 calculated with (b) MARG2D and (c) ELITE are also
almost identical to each other.

4. Stability Analysis in JT-60SA Plas-
mas Using MARG2D
In this section, we show the results of ideal MHD sta-

bility analysis in JT-60SA plasmas. Since JT-60SA is de-
signed to have a flexible plasma shape, we focus on effects
of the plasma shape on MHD stability. The effect of the
plasma shape on the βN limit determined by low-n MHD
stability is investigated in Subsec. 4.1, and the shaping ef-
fect on the edge MHD stability is analyzed in Subsec. 4.2.

4.1 Low-n MHD mode analysis in JT-60SA
plasmas

As the complemental device of ITER, JT-60SA is
now under design by the JA-EU satellite tokamak work-
ing group and the JT-60SA design team [14]. To support
and supplement ITER toward a future demonstration reac-
tor DEMO, JT-60SA will have a flexibility of the plasma
shape. In this subsection, we analyze the stability of ideal
MHD modes in the variously shaped JT-60SA plasmas,
and investigate the effect of the plasma shape on the βN

limit determined by the stability of low-n MHD modes.
Figure 5 shows the contours of ψ = const. (mag-

netic surfaces) of (a) an ‘ITER-like’ shape equilibrium
(later written as ITER-like Eq.) and (b) a so-called

010-4



Plasma and Fusion Research: Regular Articles Volume 2, 010 (2007)

Fig. 5 Contours of ψ = const. (magnetic surfaces) of (a) the
ITER-like Eq. and (b) the high-S Eq.

‘high-S ’ shape equilibrium (high-S Eq.) in JT-60SA,
where S is the shaping factor defined as S = q95Ip/aBt,
and q95 is the safety factor q at 95% of the flux sur-
face. The shaping parameters (R0, a, κup, κdw, δup, δdw) are
(3.00, 0.97, 1.66, 2.01, 0.34, 0.60) in the ITER-like Eq. and
(3.03, 1.15, 1.96, 1.96, 0.63, 0.56) in the high-S Eq., where
κ is the ellipticity, δ is the triangularity, and the subscript
up (dw) indicates the up (down) side value. The Bt and Ip

values are (Bt, Ip) = (2.49, 2.59) in the ITER-like Eq. and
(2.60, 5.00) in the high-S Eq. Profiles of pressure gradient
and averaged parallel current density are given as

dp
dψ
∝ (1 − ψ3.0

N )1.2+Cp

(
exp

(
− (ψN − 0.94)2

2 × (0.03)2

))
,

(17)

〈 j · B〉∝ (1 − ψCj2

N )Cj3+Cj

(
exp

(
− (ψN − 0.94)2

2 × (0.03)2

))
.

(18)

Here j is the plasma current density, and the bracket 〈X〉
expresses the flux surface average of a variable X. The
pressure gradient and the current density near ψN = 0.94
are changed by adjusting the parameters Cp and Cj, which
are used to express the edge pedestal and the virtual boot-
strap current, and the parameters Cj2, Cj3 are adjusted for
changing the global current profile.

Figure 6 shows the profiles of (a) p and (b) q of the
ITER-like Eq. (black) and the high-S Eq. (gray) when βN

is fixed as 4.0. The solid lines express the L-mode pro-
files whose parameters (Cp, Cj) in Eqs. (17) and (18) are
(0.2,0.18) in the ITER-like Eq. and (0.2,0.2) in the high-
S Eq., and the broken lines indicate the H-mode profiles
whose (Cp, Cj) are (0.6, 0.25) and (0.6,0.3) in the ITER-
like and the high-S equilibria, respectively. For βN limit
analysis, a series of different βN equilibria has the similar
q profile whose q value at the magnetic axis is q0 = 1.20
and qedge = 5.63 by adjusting Ip and the parameters Cj2

Fig. 6 Profiles of (a) pressure p and that of (b) safety factor q in
the ITER-like Eq. (black) and the high-S Eq. (gray) when
βN = 4.0. The solid and broken lines show the L-mode
profiles and the H-mode profiles, respectively. The q pro-
files of these equilibria are almost identical to each other.

Fig. 7 Dependence of the βN limit on the toroidal mode num-
ber n of the MHD modes in the ITER-like Eq. (black)
and the high-S Eq. (gray) ((a) L-mode profile case, (b)
H-mode profile case). The solid lines show the βN limit
when d/a = 1.3 and the broken lines express that when
d/a = ∞. The βN limits when the equilibria have the L-
mode profile, shown in (a), are (1) 3.27 (d/a = ∞) and
(2) 3.36 (1.3) in the ITER-like Eq., and those are (3) 3.53
(d/a = ∞) and (4) 3.75 (1.3) in the high-S Eq., respec-
tively. In the H-mode profile case shown in (b), the βN

limits are (1) 3.71 (d/a = ∞) and (2) 3.75 (1.3) in the
ITER-like Eq., and those are (3) 4.15 (d/a = ∞) and (4)
4.23 (1.3) in the high-S Eq.

and Cj3 in Eq. (18). For example, when βN = 4.0 as shown
in Fig. 6, (Ip,Cj2,Cj3) are adjusted as (2.84, 2.55, 1.5) and
(2.81, 2.42, 1.5) in the ITER-like L-mode and H-mode
equilibria, and (5.03, 3.34, 1.0) and (5.06, 2.85, 1.0) in the
high-S L-mode and H-mode equilibria.

Figure 7 shows the βN limit determined by the stabil-
ity of 1 ≤ n ≤ 7 MHD modes in (a) the L-mode and (b)
the H-mode equilibria where the black lines show the re-
sults of the ITER-like Eq., and the gray lines show those
of the high-S Eq. The solid lines show the results when
the conducting wall surrounding the plasma is placed at
d/a = 1.3 and the broken lines indicate the no wall con-
dition (d/a = ∞) results. In the ITER-like L-mode profile
case, the βN limit determined by the n = 3 MHD mode sta-
bility is 3.27 when d/a = ∞ (shown with dotted line (1) in
Fig. 7 (a)), and this value changes little when the conduct-
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ing wall is placed close to the plasma surface d/a = 1.3
(dotted line (2)). The βN limit of the high-S L-mode Eq.,
determined by the n = 2 MHD mode stability, is 3.53 when
d/a = ∞, which is larger than that of the ITER-like L-
mode Eq. Since lower-n MHD modes can be stabilized
effectively by bringing the conducting wall close to the
plasma surface, the βN limit increases from 3.53 to 3.75
and the n number of the MHD mode determining the βN

limit changes from 2 to 5 by changing d/a from ∞ to 1.3
in this high-S L-mode Eq. case. In the H-mode profile case
shown in Fig. 7 (b), the βN limit becomes larger than that in
the L-mode profile case, because the edge pedestal raises
the level of the plasma pressure near the surface and re-
duces that of the plasma core region as shown in Fig. 6 (a).
The high-S Eq. also has a larger βN limit than that of the
ITER-like Eq. as in the L-mode case. When d/a = 1.3, for
example, the βN limit of the high-S Eq. reaches about 4.23,
which is larger than that of the ITER-like Eq. (= 3.75).

From these results, we confirm that the high-S equi-
librium is suitable for a high performance discharge whose
βN ≥ 3.5, and MARG2D is a powerful tool to investigate
an optimized equilibrium profile by analyzing the βN limit
in the various equilibria.

4.2 Stability analysis in JT-60SA edge
plasma

As is well known, the MHD stability of tokamak edge
plasmas is responsible for ELM phenomena. Moreover,
since a plasma performance depends on the edge pres-
sure gradient as shown in the previous subsection, the edge
MHD stability is also important for achieving high perfor-
mance discharges. In this subsection, the stability of edge-
localized MHD modes in JT-60SA plasma is analyzed us-
ing MARG2D.

The equilibria to be analyzed are the ITER-like Eq.
and the high-S Eq. whose magnetic surface shapes are
shown in Fig. 5. In this analysis, the Bt and Ip values are

Fig. 9 Stability diagrams of the ITER-like Eq. (black) and the high-S Eq. (gray) on (a) the
( j//edge/〈〈 j//〉〉, α94) plane and (b) the (s94, α94) plane. The maximum α94 value is
4.36 in the ITER-like Eq. and 5.61 in the high-S Eq.

fixed as (Bt, Ip) = (2.49, 2.59) in the ITER-like Eq. and
(2.60, 5.00) in the high-S Eq., and the profiles of pressure
gradient and averaged parallel current density are given as
Eqs. (17) and (18). The parameters (Cj2,Cj3) are fixed as
(2.4, 1.0) in each equilibrium, and the pressure gradient
and the current density near ψN = 0.94 are changed by ad-
justing the parameters Cp and Cj. The poloidal beta value
βp is fixed as 0.8, and the qedge values of these equilibria
are similar to each other when the parameter Cj is fixed.
Figure 8 shows the profiles of (a) pressure p (solid line)
and pressure gradient dp/dψ (broken line), and that of (b)
safety factor q (solid line) and 〈 j · B〉 when Cp = 2.0 and
Cj = 0.3. The black and the gray lines show the profiles of
the ITER-like Eq. and those of the high-S Eq. The posi-
tion of the wall is fixed as d/a = 1.3, and the stability of
the MHD mode whose n varies from 1 to 60 is analyzed us-
ing MARG2D, and the stability boundary of the infinite-n
ballooning mode is analyzed using the BETA code [21].

Figure 9 (a) shows the result of the stability analysis
of the MHD modes on the j//edge/〈〈 j//〉〉 − α94 diagram

Fig. 8 Profiles of (a) pressure p (solid line) and pressure gradi-
ent dp/dψ (broken line), and those of (b) safety factor q
(solid line) and 〈 j · B〉 (broken line) when Cp = 2.0 and
Cj = 0.3. The black and the gray lines show the ITER-
like Eq. profiles and the high-S Eq. profiles, respectively.
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Fig. 10 Radial structures of the eigenfunction restricting the max-
imum α94 value in (a) the ITER-like Eq. (α94 = 4.36) and
(b) the high-S Eq. (α94 = 5.61). The toroidal mode num-
ber n of the eigenfunction is 8 in the ITER-like Eq. and
20 in the high-S Eq., respectively.

of the ITER-like Eq. (black) and the high-S Eq. (gray),
where j// is the current density parallel to the magnetic
field, j//edge is the flux surface averaged j// at the plasma
edge, the bracket 〈〈X〉〉 expresses the cross-section area av-
erage of a variable X, α is the normalized pressure gra-
dient defined as α = −2µ0Rq2(dp/dr)/B2, µ0 is the per-
meability in the vacuum, r is the minor radius of each
magnetic surface, and the subscript 94 indicates the value
at ψN = 0.94. In this figure, reference symbols, cubic
symbols, and circle symbols indicate the unstable points
(γIM/ωA ≥ 5.00 × 10−3), the marginal points (0.00 <

γIM/ωA < 5.00 × 10−3), and the stable points (γIM/ωA ≤
0.00), respectively. This result shows that the maximum
α94 value in the high-S Eq. (α94max = 5.61) becomes larger
than that in the ITER-like Eq. (α94max = 4.36) by changing
to the strongly shaped plasma. Since the qedge value re-
mains fixed when the ( j//edge/〈〈 j//〉〉) value is unchanged,
the maximum ( j//edge/〈〈 j//〉〉) value against peeling (kink)
modes is almost the same about 0.28 in each equilibrium.
In other words, the stability of the current-driven modes
hardly depends on the shaping factor S . On the other hand,
from the s94−α94 diagram shown in Fig. 9 (b), we find that
the second stable region against the infinite-n ideal bal-
looning mode in the high-S Eq. is broader than that in
the ITER-like Eq., where s is the magnetic shear defined
as s = r(dq/dr)/q. These results, shown in Figs. 9 (a) and
(b), indicate that the pressure-driven component is stabi-
lized by increasing the shaping factor S . This stabilization
enhances the maximum pressure gradient determined by
the peeling-ballooning mode stability.

The radial structure of the eigenfunction restricting
the maximum α94 value is shown in Fig. 10. In the ITER-
like Eq. case shown in Fig. 10 (a), the n number of the
mode is 8, and the peeling component peaking at the
plasma surface is dominant. As shown in Fig. 10 (b), the
dominant component of the eigenfunction in the high-S
Eq. case, whose n number is 20, is the ballooning compo-
nent whose envelope maximum is near ρs = 0.97. Though
this result in the high-S Eq.case is different from the result
in the ITER-like Eq. case, the width of the radial structure

is similar to that in the ITER-like Eq. case. From the view-
point of a width of the eigenfunction, the crash width of the
pedestal induced by destabilizing these peeling-ballooning
modes changes little in either equilibria.

From these results, we study that the edge MHD sta-
bility can be improved by varying the plasma shape from
the ITER-like shape to the high-S shape in JT-60SA plas-
mas without changing the width of the eigenfunction of the
MHD mode restricting the maximum pressure gradient.

5. Summary
We have devised an effective numerical method for

the stability analysis of ideal MHD modes using a physi-
cal model based on the two-dimensional Newcomb equa-
tion in combination with the conventional compressionless
ideal MHD model. The MARG2D code has been devel-
oped based on this numerical method, and this code is
able to analyze the stability of ideal MHD modes with a
wide range of toroidal mode numbers. The validity of the
MARG2D code has been confirmed through the bench-
marking tests using the DCON code for low toroidal mode
number MHD mode analysis, and those using the ELITE
code for intermediate to high toroidal mode number mode
analysis. By means of the MARG2D code, we have in-
vestigated the MHD stability property in JT-60SA, the
complemental device of ITER, focusing on an effect of
the plasma shape. These stability analyses show that the
highly shaped plasma designed for achieving high perfor-
mance discharges in JT-60SA is suitable for stabilizing not
only low toroidal mode number MHD modes, which re-
strict the βN discharge limits, but also intermediate to high
toroidal mode number MHD modes, which relate to edge
pedestal performance and ELM phenomena. As demon-
strated by the numerical analyses described in this paper,
MARG2D can effectively perform stability analyses of the
various kinds of ideal MHD modes needed for the experi-
mental analysis of existing devices and the design of ITER
and JT-60SA.

The numerical model shown in this paper can esti-
mate the compressionless linear growth rate. The numeri-
cal model for calculating the growth rate with compression
is desirable for experimental analyses and tokamak inte-
grated simulations, and will be reported in the near future.
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