Plasma and Fusion Research

Volume 18, 2503067 (2023)

Overview Articles


Research Plan of Complex Global Simulation Unit
Yasushi TODO, Hideaki MIURA, Mieko TOIDA, Ryuichi ISHIZAKI, Masahiko SATO, Hao WANG, Ryosuke SEKI, Jialei WANG, Malik IDOUAKASS, Panith ADULSIRISWAD, Naoki MIZUGUCHI, Takashi YAMAMOTO and Hideo SUGAMA
National Institute for Fusion Science, National Institutes of Natural Sciences, Toki 509-5292, Japan
(Received 21 February 2023 / Accepted 26 April 2023 / Published 17 August 2023)

Abstract

Global simulation, which takes into account the interactions between multiple hierarchies, is expected to be realized not only in the field of nuclear fusion research but also in other academic fields. However, such a complex global simulation is difficult to realize because the temporal and spatial scales of the microscopic hierarchy and those of the entire system are generally extremely different. The aim of the Complex Global Simulation Unit at the National Institute for Fusion Science is to develop simulation methods to address the abovementioned issue and to promote simulation research. This unit aims to develop 1) a global simulation of the whole magnetically-confined fusion plasma, including the core and peripheral plasma, based on the kinetic-magnetohydrodynamic hybrid simulation coupled with the gyrokinetic Poisson equation, and 2) a methodology with broad applicability for enabling simulations that closely reproduce real-world phenomena, transcending the strong limitations imposed by the capacity and capability of supercomputers. In addition, the unit aims to develop a method for coupling a particle-in-cell simulation and a global analysis of plasma waves. Furthermore, it aims to develop a multiphase (solid, liquid, gas, and plasma) simulation method for pellet injection into fusion plasmas.


Keywords

global simulation, kinetic-MHD hybrid simulation, data science, turbulence, particle-in-cell simulation

DOI: 10.1585/pfr.18.2503067


References

  • [1] W.W. Heidbrink, Phys. Plasmas 15, 05501 (2008).
  • [2] A. Fasoli et al., Nucl. Fusion 47, S264 (2007).
  • [3] K. Toi et al., Plasma Phys. Control. Fusion 53, 024008 (2011).
  • [4] S.E. Sharapov et al., Nucl. Fusion 53, 104022 (2013).
  • [5] N.N. Gorelenkov, S.D. Pinches and K. Toi, Nucl. Fusion 54, 125001 (2014).
  • [6] Y. Todo, Rev. Mod. Plasma Phys. 3, 1 (2019).
  • [7] W. Park et al., Phys. Fluids B 4, 2033 (1992).
  • [8] W. Park et al., Phys. Plasmas 5, 1796 (1999).
  • [9] D.A. Spong, B.A. Carreras and C.L. Hedrick, Phys. Fluids B 4, 3316 (1992).
  • [10] Y. Todo et al., Phys. Plasmas 2, 2711 (1995).
  • [11] S. Briguglio et al., Phys. Plasmas 2, 3711 (1995).
  • [12] Y. Todo and T. Sato, Phys. Plasmas 5, 1321 (1998).
  • [13] G.Y. Fu et al., Phys. Plasmas 13, 052517 (2006).
  • [14] C.C. Kim et al., Phys. Plasmas 15, 072507 (2008).
  • [15] X.Wang, F. Zonca and L. Chen, Plasma Phys. Control. Fusion 52, 115005 (2010).
  • [16] J. Zhu, Z.W. Ma and S. Wang, Phys. Plasmas 23, 122506 (2016).
  • [17] J.W. Burby and C. Tronci, Plasma Phys. Control. Fusion 59, 045013 (2017).
  • [18] Y. Todo et al., Plasma Phys. Control. Fusion 63, 075018 (2021).
  • [19] M. Sato and Y. Todo, Nucl. Fusion 59, 094003 (2019).
  • [20] H. Wang et al., Nucl. Fusion 59, 096041 (2019).
  • [21] W.W. Heidbrink et al., Phys. Rev. Lett. 99, 245002 (2007).
  • [22] Y. Todo et al., Nucl. Fusion 54, 104012 (2014).
  • [23] Y. Todo et al., Nucl. Fusion 55, 073020 (2015).
  • [24] Y. Todo, M.A. Van Zeeland and W.W. Heidbrink, Nucl. Fusion 56, 112008 (2016).
  • [25] N. Winsor, J.L. Johnson and J.M. Dawson, Phys. Fluids 11, 2448 (1968).
  • [26] P.H. Diamond, S.-I. Itoh and K. Itoh, Plasma Phys. Control. Fusion 47, R35 (2005).
  • [27] G.Y. Fu, Phys. Rev. Lett. 101, 185002 (2008).
  • [28] T. Ido et al., Phys. Rev. Lett. 116, 015002 (2016).
  • [29] H. Wang et al., Phys. Rev. Lett. 120, 175001 (2018).
  • [30] N. Nakajima, C. Nührenberg and J. Nührenberg, J. Plasma Fusion Res. SERIES 6, 45 (2004).
  • [31] N. Nakajima et al., Nucl. Fusion 46, 177 (2006).
  • [32] M. Sato and Y. Todo, J. Plasma Phys. 86, 815860305 (2020).
  • [33] M. Sato and Y. Todo, Nucl. Fusion 61, 116012 (2021).
  • [34] K.L. Wong et al., Phys. Rev. Lett. 66, 1874 (1991).
  • [35] W.W. Heidbrink et al., Nucl. Fusion 31, 1635 (1991).
  • [36] K. Shinohara et al., Nucl. Fusion 42, 942 (2002).
  • [37] M. Osakabe et al., Nucl. Fusion 46, S911 (2006).
  • [38] Y. Todo, New J. Phys. 18, 115005 (2016).
  • [39] Y. Todo, Nucl. Fusion 59, 096048 (2019).
  • [40] A. Bierwage et al., Nature Comm. 9, 3282 (2018).
  • [41] Y. Todo et al., Phys. Plasmas 24, 081203 (2017).
  • [42] R. Seki et al., Nucl. Fusion 59, 096018 (2019).
  • [43] R. Seki et al., J. Plasma Phys. 86, 815860502 (2020).
  • [44] M. Idouakass et al., Phys. Plasmas 28, 080701 (2021).
  • [45] P. Adulsiriswad et al., Nucl. Fusion 60, 096005 (2020).
  • [46] P. Adulsiriswad et al., Nucl. Fusion 61, 116065 (2021).
  • [47] H. Wang et al., Nucl. Fusion 62, 106010 (2022).
  • [48] J. Wang et al., Nucl. Fusion 60, 106004 (2020).
  • [49] J. Wang et al., Nucl. Fusion 60, 112012 (2020).
  • [50] A. Di Siena et al., Phys. Rev. Lett. 127, 025002 (2021).
  • [51] A. Ishizawa et al., Nucl. Fusion 61, 114002 (2021).
  • [52] S. Mazzi et al., Nature Phys. 18, 776 (2022).
  • [53] W.W. Lee, J. Comput. Phys. 72, 243 (1987).
  • [54] M. Toida et al., Plasma Fusion Res. 13, 3403015 (2018).
  • [55] M. Toida et al., Plasma Fusion Res. 14, 3401112 (2019).
  • [56] T. Kotani et al., J. Phys. Soc. Jpn. 90, 124501 (2021).
  • [57] T. Kotani et al., Gephys. Res. Lett. 50, e2022GL102356 (2023).
  • [58] M. Toida and Y. Ohsawa, Solar Physics 171, 161 (1997).
  • [59] S.L. Milora et al., Nucl. Fusion 35, 657 (1995).
  • [60] T.E. Evans et al., EX/1-3, 25th IAEA Fusion Energy Conference (2014).
  • [61] Y. Todo, N. Nakajima, M. Sato and H. Miura, Plasma Fusion Res. 5, S2062 (2010).
  • [62] R. Ishizaki, P.B. Parks, N. Nakajima and M. Okamoto, Phys. Plasmas 11, 4064 (2004).
  • [63] T. Yabe and P.Y. Wang, J. Phys. Soc. Jpn. 60, 2105 (1991).
  • [64] S. Pope, Turbulent Flows (Cambridge University Press, 2000).
  • [65] M.S. Miesch et al., Space Sci. Rev. 194, 97 (2015).
  • [66] H. Miura, K. Araki and F. Hamba, J. Comput. Phys. 316, 385 (2016).
  • [67] H. Miura and F. Hamba, J. Comput. Phys. 448, 110692 (2022).
  • [68] H. Miura, F. Hamba and A. Ito, Nucl. Fusion 57, 076034 (2017).
  • [69] H. Miura and T. Gotoh, Phys. Rev. E 100, 063207 (2019).
  • [70] H. Miura et al., AAPPS-DPP (2021).
  • [71] S. Lele, J. Comput. Phys. 103, 16 (1992).
  • [72] H. Miura et al., Fusion Sci. Technol. 51, 8 (2007).
  • [73] H. Miura and N. Nakajima, Nucl. Fusion 50, 054006 (2010).
  • [74] T. Gotoh, S. Hatanaka and H. Miura, J. Comput. Phys. 231, 7398 (2012).
  • [75] M.J. Berger and J. Oliger, J. Comput. Phys. 53, 484 (1984).
  • [76] T. Hatori et al., J. Comput. Phys. 319, 231 (2016).
  • [77] C. Foias et al., Navier-Stokes Equations and Turbulence (Cambridge University Press, 2008).
  • [78] S. Goto, Y. Saito and G. Kawahara, Phys. Rev. Fluids 2, 064603 (2017).
  • [79] Y. Motoori and S. Goto, J. Fluid Mech. 865, 1085 (2019).
  • [80] Y. Motoori and S. Goto, Int. J. Heat Fluid Flow 86, 108658 (2020).
  • [81] M. Shimizu and G. Kawahara, arXiv:1803.08206 [physics.flu-dyn].
  • [82] A. Kubo and M. Shimizu, Phys. Rev. E 105, 065101 (2022).
  • [83] H. Miura and K. Araki, Plasma Phys. Control. Fusion 55, 014012 (2013).
  • [84] H. Miura and K. Araki, Phys. Plasmas 21, 072313 (2014).
  • [85] K. Yoshida, H. Miura and Y. Tsuji, J. Low Temp. Phys. 196, 211 (2019).
  • [86] K. Yoshida, H. Miura and Y. Tsuji, J. Low Temp. Phys. (2022) https://doi.org/10.1007/s10909-022-02819-4.
  • [87] N. Sakaki et al., submitted.
  • [88] S.L. Brunton and J. N.Kutz, Data-Driven Science and Engineering (Cambridge University Press, 2019).
  • [89] A. Kageyama and N. Sakamoto, PeerJ Comp. Sci. 6 e305 (2020).
  • [90] A. Kageyama et al., Plasma Fusion Res. 15, 1401065 (2022).
  • [91] http://www.ffte.jp
  • [92] HPCAsia2022 (Jan. 2022) (https://doi.org/10.1145/3492805.3492809).