Plasma and Fusion Research

Volume 18, 2501050 (2023)

Overview Articles


Magnetic Nozzle Radiofrequency Plasma Systems for Space Propulsion, Industry, and Fusion Plasmas
Kazunori TAKAHASHI1,2,7), Christine CHARLES3), Rod W BOSWELL3), Kazuma EMOTO4), Yoshinori TAKAO4), Shiro HARA5,6), Haruhisa NAKANO7), Kenichi NAGAOKA7) and Katsuyoshi TSUMORI7)
1)
Department of Electrical Engineering, Tohoku University, Sendai 980-8579, Japan
2)
Interdisciplinary Research Center for Non-equilibrium Plasma, Tohoku University, Sendai 980-8579, Japan
3)
Space Plasma, Power and Propulsion Laboratory, Research School of Physics, The Australian National University, Canberra ACT 2601, Australia
4)
Division of Systems Research, Yokohama National University, Yokohama 240-8501, Japan
5)
National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8506, Japan
6)
Minimal Fab Promoting Organization, Tsukuba, Ibaraki 305-8506, Japan
7)
National Institute for Fusion Science, Toki 509-5292, Japan
(Received 4 January 2023 / Accepted 1 May 2023 / Published 30 June 2023)

Abstract

Low-pressure radiofrequency (rf) plasma sources have been widely used in various fields. When static magnetic fields are applied to these sources, a diverging magnetic field configuration known as a magnetic nozzle forms downstream of the source and interesting phenomena are observed. Such structures are frequently observed in space, e.g., the surface of the Sun and the geomagnetic fields. Here, the studies performed by the authors over the last decade on the fundamental plasma physics, the space plasma propulsion, the industrial plasma technology, and the radiofrequency ion source, are briefly overviewed. The design of sources based on the type of application is an important issue. Integrating a rf plasma source into a system often requires a compact and automatically controlled system, as presented here. Herein, interaction between the low-temperature plasmas and the hot fusion plasmas is sometimes mentioned in terms of “Plasma Apparatus.”


Keywords

radiofrequency plasma, magnetic nozzle, space propulsion, Minimal Fab, ion source

DOI: 10.1585/pfr.18.2501050


References

  • [1] R.W. Boswell, Phys. Lett. 33A, 457 (1970).
  • [2] M.A. Lieberman and A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2nd edn. (Wiley, New York, 2005).
  • [3] http://www.oregon-physics.com/hyperion1.php
  • [4] C. Charles, J. Phys. D: Appl. Phys. 42, 163001 (2009).
  • [5] K. Takahashi, Rev. Mod. Plasma Phys. 3, 3 (2019).
  • [6] U. Fantz et al., Front. Phys. 9, 709651 (2021).
  • [7] N.S. Smith et al., J. Vac. Sci. Technol. B, 24, 2902 (2006).
  • [8] D.M. Goebel and I. Katz, Fundamentals of Electric Propulsion: Ion and Hall Thrusters (Wiley, Hoboken, 2008).
  • [9] K. Takahashi et al., Appl. Phys. Lett. 98, 141503 (2011).
  • [10] C. Charles et al., Appl. Phys. Lett. 100, 113504 (2012).
  • [11] C. Charles, Plasma Sources Sci. Technol. 16, R1 (2007).
  • [12] X. Sun et al., Phys. Rev. Lett. 95, 025004 (2005).
  • [13] O. Sutherland et al., Phys. Rev. Lett. 95, 205002 (2005).
  • [14] M.A. Lieberman and C. Charles, Phys. Rev. Lett. 97, 045003 (2006).
  • [15] I.A. Biloiu et al., Appl. Phys. Lett. 92, 191502 (2008).
  • [16] K. Takahashi et al., Plasma Sources Sci. Technol. 19, 025004 (2010).
  • [17] C. Charles et al., Plasma Sources Sci. Technol. 19, 045003 (2010).
  • [18] K. Takahashi et al., Phys. Plasmas 14, 114503 (2007).
  • [19] K. Takahashi et al., Phys. Plasmas 15, 074505 (2008).
  • [20] K. Takahashi et al., Appl. Phys. Lett. 94, 191503 (2009).
  • [21] C. Charles, Appl. Phys. Lett. 96, 051502 (2010).
  • [22] K. Takahashi et al., Phys. Rev. Lett. 107, 035002 (2011).
  • [23] R.W. Boswell et al., Front. Phys. 3, 14 (2015).
  • [24] A. Fruchtman, Phys. Rev. Lett. 96, 065002 (2006).
  • [25] E. Ahedo and M. Merino, Phys. Plasmas 17, 073501 (2010).
  • [26] K. Takahashi et al., Phys. Rev. Lett. 107, 235001 (2011).
  • [27] T. Lafleur et al., Phys. Plasmas 18, 080701 (2011).
  • [28] K. Takahashi et al., Phys. Rev. Lett. 110, 195003 (2013).
  • [29] K. Takahashi et al., Plasma Sources Sci. Technol. 25, 055011 (2016).
  • [30] J.P. Sheehan et al., Plasma Sources Sci. Technol. 23, 045014 (2014).
  • [31] Y. Zhang et al., Phys. Rev. Lett. 116, 025001 (2016).
  • [32] J.M. Little and E.Y. Choueiri, Phys. Rev. Lett. 117, 225003 (2016).
  • [33] M. Merino and E. Ahedo, IEEE Trans. Plasma Sci. 43, 244 (2015).
  • [34] Y. Zhang et al., Astrophys. J. 829, 10 (2016).
  • [35] K. Takahashi et al., Phys. Rev. Lett. 120, 045001 (2018).
  • [36] J.Y. Kim et al., New J. Phys. 20, 063033 (2018).
  • [37] K. Takahashi et al., Phys. Rev. Lett. 125, 165001 (2020).
  • [38] K. Takahashi et al., Phys. Rev. Lett. 114, 195001 (2015).
  • [39] K. Takahashi et al., Plasma Phys. Control. Fusion 59, 054007 (2017).
  • [40] K. Takahashi et al., Appl. Phys. Lett. 108, 074103 (2016).
  • [41] A.W. Degeling et al., Phys. Plasmas 6, 3664 (1999).
  • [42] A.M. Keesee and E.E. Scime, Plasma Sources Sci. Technol. 16, 742 (2007).
  • [43] A. Okamoto et al., Phys. Plasmas 10, 2211 (2003).
  • [44] A. Fruchtman, IEEE Trans. Plasma Sci. 36, 403 (2008).
  • [45] K. Takahashi et al., Appl. Phys. Lett. 109, 194101 (2016).
  • [46] K. Takahashi et al., AIP Adv. 8, 105117 (2018).
  • [47] T. Sugawara et al., Plasma Fusion Res. 14, 1301143 (2019).
  • [48] K. Takahashi et al., Sci. Rep. 10, 1061 (2020).
  • [49] K. Takahashi et al., Phys. Plasmas 27, 064504 (2020).
  • [50] K. Takahashi, Sci. Rep. 11, 2768 (2021).
  • [51] K. Takahashi, Sci. Rep. 12, 18618 (2022).
  • [52] W. Cox et al., Appl. Phys. Lett. 93, 071505 (2008).
  • [53] C. Charles et al., Phys. Rev. Lett. 103, 095001 (2009).
  • [54] K. Terasaka et al., Phys. Plasmas 17, 072106 (2010).
  • [55] K. Takahashi et al., J. Phys. D: Appl. Phys. 44, 015204 (2011).
  • [56] A.V. Arefiev and B.N. Breizman, Phys. Plasmas 12, 043504 (2005).
  • [57] E.B. Hooper, J. Propul. Power 9, 757 (1993).
  • [58] S. Hepner et al., Appl. Phys. Lett. 116, 263502 (2020).
  • [59] R.L. Stenzel and J.M. Urrutia, Phys. Plasmas 7, 4450 (2000).
  • [60] C.S. Corr and R.W. Boswell, Phys. Plasmas 14, 122503 (2007).
  • [61] S. Shinohara et al., Phys. Plasmas 23, 122108 (2016).
  • [62] K. Takahashi et al., Phys. Rev. Lett. 118, 225002 (2017).
  • [63] K. Takahashi et al., Sci. Rep. 12, 20137 (2022).
  • [64] Y. Takao and K. Takahashi, Phys. Plasmas 22, 113509 (2015).
  • [65] K. Emoto et al., Phys. Plasmas 28, 093506 (2021).
  • [66] K. Emoto et al., Plasma Sources Sci. Technol. 30, 115016 (2021).
  • [67] S. Khumpuang and S. Hara, IEEE Trans. Semicond. Manuf. 28, 393 (2015).
  • [68] S. Khumpuang et al., IEEE Trans. Semicond. Manuf. 28, 551 (2015).
  • [69] Y. Liu et al., Jpn. J. Appl. Phys. 57, 06HD03 (2018).
  • [70] K. Takahashi et al., Vacuum 171[67 - 69], 109000 (2020).
  • [71] C. Charles et al., J. Phys. D: Appl. Phys. 46, 365203 (2013).
  • [72] K. Takahashi et al., J. Phys. D: Appl. Phys. 50, 265201 (2017).
  • [73] K. Takahashi et al., Front. Phys. 7, 227 (2020).
  • [74] K. Hanaoka et al., IEEE Trans. Plasma Sci. 48, 2138 (2020).
  • [75] C. Charles et al., J. Propul. Power 30, 1117 (2014).
  • [76] K. Takahashi and K. Hanaoka, Front. Phys. 9, 639010 (2021).
  • [77] K. Hanaoka and K. Takahashi, AIP Adv. 11, 025013 (2021).
  • [78] K. Tsumori et al., Rev. Sci. Instrum. 81, 02B117 (2010).
  • [79] K. Takahashi et al., Phys. Rev. Lett. 116, 135001 (2016).
  • [80] K. Takahashi et al., New J. Phys. 21, 093043 (2019).
  • [81] Y. Haba et al., Jpn. J. Appl. Phys. 59, SHHA01 (2020).
  • [82] M. Wada et al., Rev. Sci. Instrum. 91, 013330 (2020).
  • [83] T. Shibata et al., AIP Conf. Proc. 2373, 050002 (2021).