Plasma and Fusion Research

Volume 18, 2402081 (2023)

Regular Articles


Analysis of the Contribution of Magnetic Moment Conservation to Ion Energy Transport in the GAMMA 10/PDX Divergent Field Region
Kosuke TAKANASHI, Satoshi TOGO, Naomichi EZUMI, Mafumi HIRATA, Tsukasa SUGIYAMA1), Naoki SHIGEMATSU, Takumi SETO, Takuma OKAMOTO, Satoshi TAKAHASHI, Kunpei NOJIRI2) and Mizuki SAKAMOTO
Plasma Research Center, University of Tsukuba, Tsukuba 305-8577, Japan
1)
Department of Fusion Science, The Graduate University for Advanced Studies, SOKENDAI, Toki 509-5292, Japan
2)
National Institutes for Quantum Science and Technology, Naka 311-0193, Japan
(Received 8 January 2023 / Accepted 26 June 2023 / Published 25 September 2023)

Abstract

We investigated the contribution of magnetic moment conservation to ion energy transport in the divergent magnetic field region, using the GAMMA 10/PDX end region to simulate scrape-off layer (SOL) plasmas in DEMO reactors. The averaged parallel energy increments (ΔE) were measured by performing energy analyses at two points: upstream and downstream of the GAMMA 10/PDX end region. A newly developed retarding field analyzer (RFA) was inserted upstream of the end region to perform energy analyses. Assuming that only effects of potential difference (ΔEφ) and magnetic moment conservation (ΔE‹μ›) affect ΔE, the contribution of magnetic moment conservation to ion energy transport was deduced. These results suggested that ΔE‹μ› < ΔEφ irrespective of the difference in the diamagnetism at the central cell of GAMMA 10/PDX.


Keywords

energy transport, magnetic moment conservation, divergent magnetic field, SOL, retarding field analyzer

DOI: 10.1585/pfr.18.2402081


References

  • [1] N. Asakura et al., Nucl. Fusion 57, 126050 (2017).
  • [2] N. Asakura et al., Nucl. Mater. Energy 26, 100864 (2021).
  • [3] S.I. Braginskii, Reviews of Plasma Physics, vol.1 (Consultants Bureau, New York, 1965) p.205.
  • [4] Y. Homma, Plasma Phys. Control. Fusion 64, 045020 (2022).
  • [5] A. Froese et al., Plasma Fusion Res. 5, 026 (2010).
  • [6] W. Fundamenski, Plasma Phys. Control. Fusion 47, R163 (2005).
  • [7] S. Togo et al., Plasma Fusion Res. 13, 3403022 (2018).
  • [8] S. Togo et al., Plasma Fusion Res. 18, 1203005 (2023).
  • [9] F.R. Chang-Dıaz, Thin Solid Films 506-507, 449 (2006).
  • [10] M. Inutake et al., Plasma Phys. Control. Fusion 49, A121 (2007).
  • [11] Y. Nakashima et al., Nucl. Fusion 57, 116033 (2017).
  • [12] M. Sakamoto et al., Nucl. Mater. Energy 12, 1004 (2017).
  • [13] N. Ezumi et al., Nucl. Fusion 59, 066030 (2019).
  • [14] K. Ichimura et al., Plasma Fusion Res. 7, 2405147 (2012).
  • [15] K. Nojiri et al., Plasma Fusion Res. 14, 2401086 (2019).
  • [16] Y. Kinoshita et al., Plasma Fusion Res. 14, 2402063 (2019).
  • [17] J.H. Foote and G.D. Porter, Plasma Phys. Control. Fusion 31, 255 (1989).
  • [18] S. Togo et al., J. Adv. Simulat. Sci. Eng. 9, 185 (2022).