Plasma and Fusion Research

Volume 18, 2402056 (2023)

Regular Articles


Study on Knock-on Tail Formation in Deuteron Velocity Distribution Function Due to ICRF-Heated Energetic Proton by Using Neutron Diagnostics in the Large Helical Device
Daisuke UMEZAKI, Hideaki MATSUURA, Kento KIMURA, Takahito FUKUDA, Kunihiro OGAWA1,2), Mitsutaka ISOBE1,2), Shuji KAMIO3), Yasuko KAWAMOTO1) and Tetsutaro OISHI1,2)
Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka 819-0395, Japan
1)
National Institute for Fusion Science, National Institutes of Natural Sciences, Toki 509-5292, Japan
2)
The Graduate University for Advanced Studies, SOKENDAI, Toki 509-5292, Japan
3)
Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA
(Received 9 January 2023 / Accepted 16 May 2023 / Published 14 July 2023)

Abstract

In fusion plasmas, energetic ions play a crucial role in plasma heating. Nuclear elastic scattering (NES) is a non-Coulombic scattering process that affects the energy transport between energetic and bulk ions. In the Large Helical Device (LHD), energetic protons produced by neutral beam injection (180 keV) formed a knock-on tail (KT) in deuterons via NES, and the DD neutron emission rate increased by one order of magnitude in relatively high-electron-temperature plasmas. Furthermore, the effect of NES among ion cyclotron range of frequency (ICRF) tail protons and bulk deuterons was investigated at high-electron-temperature plasmas in the LHD. It was found that DD neutron emission rate was increased by a factor of 2 to 4. Changes in ion temperature and plasma density cannot be the only reasons for the increase in DD neutron emission rate. The increment in DD neutron emission rate was reproduced by the Fokker-Planck simulation using the Boltzmann collision integral for NES by assuming the ICRF-tail protons having a high-temperature Maxwellian.


Keywords

nuclear elastic scattering, NES effect, LHD, knock-on tail, ICRF heating

DOI: 10.1585/pfr.18.2402056


References

  • [1] J.J. Devany and M.L. Stein, Nucl. Sci. Eng. 46, 323 (1971).
  • [2] S.T. Perkins and D.E. Cullen, Nucl. Sci. Eng. 77, 20 (1981).
  • [3] J. Källne et al., Phys. Rev. Lett. 85, 3358 (1997).
  • [4] A.A. Korotkov et al., Phys. Plasmas 7, 957 (2000).
  • [5] H. Matsuura et al., Nucl. Fusion 61, 094001 (2021).
  • [6] H. Matsuura et al., Phys. Plasmas 29, 092502 (2022).
  • [7] H. Matsuura et al., Nucl. Fusion 60, 066007 (2020).
  • [8] F.S. Zaitsev et al., Plasma Phys. Control. Fusion 49, 1747 (2007).
  • [9] M. Nocente et al., Nucl. Fusion 53, 053010 (2013).
  • [10] T. Mutoh et al., Phys. Rev. Lett. 85, 4530 (2000).
  • [11] R. Kumazawa et al., Plasma Phys. Control. Fusion 45, 1037 (2003).
  • [12] K. Saito et al., Fusion Sci. Technol. 58, 515 (2010).
  • [13] R. Seki et al., Plasma Fusion Res. 15, 1202088 (2020).
  • [14] S. Kamio et al., J. Inst. 14, C08002 (2019).
  • [15] H. Kasahara et al., 38th EPS Conf. Plasma Physics 35, 897 (2011).
  • [16] K. Saito et al., Fusion Eng. Des. 96-7, 583 (2015).
  • [17] M. Isobe et al., IEEE Trans. Plasma Sci. 46, 2050 (2018).
  • [18] M.M. Rosenbluth et al., Phys. Rev. 107, 1 (1957).
  • [19] H. Matsuura and Y. Nakao, Phys. Plasmas 13, 062507 (2006).
  • [20] M. Nakamura et al., J. Phys. Soc. Jpn. 75, 024801 (2006).
  • [21] D.E. Cullen and S.T. Perkins, Nucl. Sci. Eng. 81, 75 (1982).
  • [22] T.H. Stix et al., Nucl. Fusion 15, 737 (1975).
  • [23] S. Kamio et al., Rev. Sci. Instrum. 91, 113304 (2020).
  • [24] D.A. Spong, Phys. Plasmas 18, 056109 (2011).
  • [25] S. Sugiyama et al., Plasma Phys. Control. Fusion 60, 105003 (2018).
  • [26] S. Kamio et al., Nucl. Fusion 62, 016004 (2022).