Plasma and Fusion Research

Volume 18, 2401049 (2023)

Regular Articles


Measurement of Ion Energy Distribution Function of Fast Plasma Flow Driven by Plasma Focus Device Using Retarding Field Energy Analyzer
Takuya OGUCHI, Jun MATSUYAMA, Muneaki SHIGETA, Taichi TAKEZAKI, Toru SASAKI1) and Hiroaki ITO
Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
1)
Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
(Received 6 January 2023 / Accepted 25 April 2023 / Published 14 June 2023)

Abstract

To understand the mechanism of particle acceleration in collisionless shocks, generating a collisionless plasma flowing through dilute gas is required. We have proposed a compact plasma focus (CPF) device to generate collisionless plasma by using pulsed-power discharge. To discuss a particle acceleration process in collisionless shocks, it is necessary to evaluate an ion energy distribution function (IEDF) of the plasma. In this study, we measured the IEDF of the plasma flow using a retarding field energy analyzer (RFA). The experimental results measured by the RFA showed that ions with a few eV are dominant in the plasma flow generated by the CPF device. The IEDF could be fitted with the shifted Maxwellian distribution. The plasma parameters were estimated to be the ion number density ni = 4.6+0.2−0.8 × 1019 m−3, the ion temperature Ti = 0.8+0.6−0.4 eV, and the drift velocity vd = 11+0.5−3.5 km/s. The estimated velocity approximately agreed with the result of a time-of-flight method calculated by the ion current waveform.


Keywords

collisionless shock, fast plasma flow, pulsed-power discharge, plasma focus, ion current measurement

DOI: 10.1585/pfr.18.2401049


References

  • [1] S. Swordy, in The Astrophysics of Galactic Cosmic Rays (Springer, 2001), pp. 85-94.
  • [2] J. Linsley, Phys. Rev. Lett. 10, 146 (1963).
  • [3] A.R. Bell, Mon. Not. R. Astron. Soc. 182, 147 (1978).
  • [4] T. Ide, Y. Sakawa, Y. Kuramitsu, T. Morita, H. Tanji, K. Nishio, M. Kuwada, H. Ide, K. Tsubouchi, S. Shimazaki et al., EPJ Web of Conferences 59, 15002 (2013).
  • [5] R. Drake, Phys. Plasmas 7, 4690 (2000).
  • [6] D. Ryutov, B. Remington, H. Robey and R. Drake, Phys. Plasmas 8, 1804 (2001).
  • [7] A. Stockem, F. Fiuza, A. Bret, R. Fonseca and L. Silva, Sci. Rep. 4, 3934 (2014).
  • [8] R. Yamazaki, S. Matsukiyo, T. Morita, S.J. Tanaka, T. Umeda, K. Aihara, M. Edamoto, S. Egashira, R. Hatsuyama, T. Higuchi et al., Phys. Rev. E 105, 025203 (2022).
  • [9] D. Schaeffer, W. Fox, D. Haberberger, G. Fiksel, A. Bhattacharjee, D. Barnak, S. Hu and K. Germaschewski, Phys. Rev. Lett. 119, 025001 (2017).
  • [10] K. Kondo, M. Nakajima, T. Kawamura and K. Horioka, Rev. Sci. Instrum. 77, 036104 (2006).
  • [11] V.A. Gribkov, A. Banaszak, B. Bienkowska, A.V. Dubrovsky, I. Ivanova-Stanik, L. Jakubowski, L. Karpinski, R.A. Miklaszewski, M. Paduch, M.J. Sadowski et al., J. Phys. D: Appl. Phys. 40, 3592 (2007).
  • [12] M. Sohrabi, Z. Soltani and M. Habibi, Radiat. Phys. Chem. 172, 108836 (2020).
  • [13] T. Sasaki, H. Kinase, T. Takezaki, K. Takahashi, T. Kikuchi, T. Aso and N. Harada, JPS Conf. Proc. 1, 015096 (2014).
  • [14] T. Takezaki, S. Kato, T. Oguchi, S. Watanabe, K. Takahashi, T. Sasaki, T. Kikuchi and H. Ito, Phys. Plasmas 28, 102109 (2021).
  • [15] T. Takezaki, K. Takahashi, T. Sasaki, T. Kikuchi and N. Harada, Phys. Plasmas 23, 062904 (2016).