Plasma and Fusion Research

Volume 18, 2401041 (2023)

Regular Articles


Measurement of L-Shell Emission from Iron-Group Elements for High-Resolution X-Ray Spectroscopy in Future Astronomy
Yuken OHSHIRO1,2), Tomoko KAWATE3,4), Hiroya YAMAGUCHI2,1) and Izumi MURAKAMI3,4)
1)
Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
2)
Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan
3)
National Institute for Fusion Science, National Institutes of Natural Sciences, 322-6 Oroshi-cho, Toki, Gifu 509-5292, Japan
4)
Department of Fusion Science, The Graduate University for Advanced Studies, SOKENDAI, 322-6 Oroshi-cho, Toki, Gifu 509-5292, Japan
(Received 9 January 2023 / Accepted 23 March 2023 / Published 22 June 2023)

Abstract

Measuring abundance of iron-group elements (IGEs; Cr, Mn, Fe, and Ni) is essential for understanding astrophysical phenomena such as supernovae. The L-shell emissions from IGEs will soon be resolved by next-generation X-ray satellites, enabling more accurate measurements of abundance. However, theoretical calculations for these L-shell transitions have not been sufficiently validated using experimental work. Herein, large helical device (LHD) experiments that measured L-shell emission from Ni and Mn are reported. The temporal evolution of LHD plasma is characterized by three phases, each of which resolves different L-shell emissions. We modeled EUV-Short spectra considering LHD plasma structure with AtomDB, an atomic database widely used in the X-ray astronomy community. We discovered that the observed intensity ratios of the 3C (2p53d1 1P1 → 2p6 1S0) to 3D (2p53d1 3D1 → 2p6 1S0) transition of Ne-like ions are 0.4 - 0.6 times lower than the theoretically predicted ratios.


Keywords

EUV spectroscopy, line identification, intensity ratio, nickel, manganese

DOI: 10.1585/pfr.18.2401041


References

  • [1] Y. Ohshiro, H. Yamaguchi, S.-C. Leung, K. Nomoto, T. Sato, T. Tanaka, H. Okon, R. Fisher, R. Petre and B.J. Williams, Discovery of a Highly Neutronized Ejecta Clump in the Type Ia Supernova Remnant 3C 397, Astrophys. J. Lett. 913 (2), L34 (June 2021).
  • [2] T. Sato, K. Maeda, S. Nagataki, T. Yoshida, B. Grefenstette, B.J. Williams, H. Umeda, M. Ono and J.P. Hughes, High-entropy ejecta plumes in Cassiopeia A from neutrino-driven convection, Nature 592 (7855), 537 (April 2021).
  • [3] H. Yamaguchi, C. Badenes, R. Petre, T. Nakano, D. Castro, T. Enoto, J.S. Hiraga, J.P. Hughes, Y. Maeda, M. Nobukawa, S. Safi-Harb, P.O. Slane, R.K. Smith and H. Uchida, Discriminating the Progenitor Type of Supernova Remnants with Iron K-Shell Emission, Astrophys. J. 785 (2), L27 (April 2014).
  • [4] XRISM Science Team, Science with the X-ray Imaging and Spectroscopy Mission (XRISM), arXiv e-prints, 2003:arXiv:2003.04962 (March 2020).
  • [5] A.R. Foster, L. Ji, R.K. Smith and N.S. Brickhouse, Updated Atomic Data and Calculations for X-Ray Spectroscopy, Astrophys. J. 756 (2), 128 (August 2012).
  • [6] A. Iiyoshi, A. Komori, A. Ejiri, M. Emoto, H. Funaba, M. Goto, K. Ida, H. Idei, S. Inagaki, S. Kado, O. Kaneko, K. Kawahata, T. Kobuchi, S. Kubo, R. Kumazawa, S. Masuzaki, T. Minami, J. Miyazawa, T. Morisaki, S. Morita, S. Murakami, S. Muto, T. Mutoh, Y. Nagayama, Y. Nakamura, H. Nakanishi, K. Narihara, K. Nishimura, N. Noda, S. Ohdachi, N. Ohyabu, Y. Oka, M. Osakabe, T. Ozaki, B. J. Peterson, A. Sagara, S. Sakakibara, R. Sakamoto, H. Sasao, M. Sasao, K. Sato, M. Sato, T. Seki, T. Shimozuma, M. Shoji, H. Suzuki, Y. Takeiri, K. Tanaka, K. Toi, T. Tokuzawa, K. Tsumori, K. Tsuzuki, K. Y. Watanabe, T. Watari, H. Yamada, I. Yamada, S. Yamaguchi, M. Yokoyama, R. Akiyama, H. Chikaraishi, K. Haba, S. Hamaguchi, M. Iima, S. Imagawa, N. Inoue, K. Iwamoto, S. Kitagawa, J. Kodaira, Y. Kubota, R. Maekawa, T. Mito, T. Nagasaka, A. Nishimura, C. Takahashi, K. Takahata, Y. Takita, H. Tamura, T. Tsuzuki, S. Yamada, K. Yamauchi, N. Yanagi, H. Yonezu, Y. Hamada, K. Matsuoka, K. Murai, K. Ohkubo, I. Ohtake, M. Okamoto, S. Satoh, T. Satow, S. Sudo, S. Tanahashi, K. Yamazaki, M. Fujiwara and O. Motojima, Overview of the Large Helical Device project, Nucl. Fusion 39 (9Y), 1245 (September 1999).
  • [7] M.B. Chowdhuri, S. Morita and M. Goto, Characteristics of an absolutely calibrated flat-field extreme ultraviolet spectrometer in the 10-130 A range for fusion plasma diagnostics, Applied Optics 47 (2), 135 (January 2008).
  • [8] T. Oishi, N. Ashikawa, F. Nespoli, S. Masuzaki, M. Shoji, E.P. Gilson, R. Lunsford, S. Morita, M. Goto, Y. Kawamoto, C. Suzuki, Z. Sun, A. Nagy, D.A. Gates and T. Morisaki, Line identification of boron and nitrogen emissions in extreme- and vacuum-ultraviolet wavelength ranges in the impurity powder dropping experiments of the Large Helical Device and its application to spectroscopic diagnostics, Plasma Sci. Technol. 23 (8), 084002 (June 2021).
  • [9] X.L. Huang, E.H. Wang, C.F. Dong, S. Morita, T. Oishi, I. Murakami and M. Goto, Radial profiles and emissivity ratio analysis of Ne-like FeXVII n = 3-2 transitions in Large Helical Device, J. Korean Physical Society 65 (8), 1265 (October 2014).
  • [10] H. Nozato, S. Morita, M. Goto, A. Ejiri and Y. Takase, Acceleration characteristics of spherical and nonspherical pellets by the LHD impurity pellet injector, Rev. Sci. Instrum. 74 (3), 2032 (March 2003).
  • [11] K.V. Khlopenkov and S. Sudo, Production and acceleration of tracer encapsulated solid pellets for particle transport diagnostics, Rev. Sci. Instrum. 69 (9), 3194 (September 1998).
  • [12] S. Sudo, N. Tamura, S. Muto, T. Ozaki, C. Suzuki, H. Funaba, I. Murakami, D. Kato, S. Inagaki and Katsumi Ida, Plasma Diagnostics with Tracer-Encapsulated Solid Pellet, Plasma Fusion Res. 9, 1402039 (2014).
  • [13] A. Kramida, Yu. Ralchenko, J. Reader and and NIST ASD Team, NIST Atomic Spectra Database (ver. 5.10), [Online]. Available: https://physics.nist.gov/asd [2022, December 21]. National Institute of Standards and Technology, Gaithersburg, MD., 2022.
  • [14] E. Behar, J. Cottam and S.M. Kahn, The Chandra Iron-L X-Ray Line Spectrum of Capella, Astrophys. J. 548 (2), 966 (February 2001).
  • [15] M.F. Gu, P. Beiersdorfer, G.V. Brown, H. Chen, D.B. Thorn and S.M. Kahn, Wavelength Measurements of Ni L-Shell Lines between 9 and 15 A, Astrophys. J. 657 (2), 1172 (March 2007).
  • [16] F. Tyrén, Die optischen L-Spektren der Elemente Chrom bis Kobalt im extremen Ultraviolett, Zeitschrift für Physik 111 (5), 314 (May 1938).
  • [17] M.F. Gu, The flexible atomic code, Canadian Journal of Physics 86 (5), 675 (May 2008).
  • [18] H.P. Summers. The ADAS User Manual, version 2.6. https://www.adas.ac.uk/manual.php.
  • [19] G.V. Brown, P. Beiersdorfer and K. Widmann, Phys. Rev. A 63 (3), 032719 (February 2001).
  • [20] M.F. Gu, P. Beiersdorfer, G.V. Brown, H. Chen, K.R. Boyce, R.L. Kelley, C.A. Kilbourne, F.S. Porter and S.M. Kahn, Laboratory Measurements of 3 → 2 X-Ray Emission Lines of Ne-like Ni XIX, Astrophys. J. 607 (2), L143 (April 2004).
  • [21] D.L. McKenzie, P.B. Landecker, R.M. Broussard, H.R. Rugge, R.M. Young, U. Feldman and G.A. Doschek, Solar flare X-ray spectra between 7.8 and 23.0 Angstroms, Astrophys. J. 241, 409 (October 1980).
  • [22] S. Kühn, C. Cheung, N.S. Oreshkina, R. Steinbrügge, M. Togawa, S. Bernitt, L. Berger, J. Buck, M. Hoesch, J. Seltmann, F. Trinter, C.H. Keitel, M.G. Kozlov, S.G. Porsev, M.F. Gu, F.S. Porter, T. Pfeifer, M.A. Leutenegger, Z. Harman, M.S. Safronova, J.R. Crespo López-Urrutia and C. Shah, New Measurement Resolves Key Astrophysical Fe XVII Oscillator Strength Problem, Phys. Rev. Lett. 129 (24), 245001 (December 2022).
  • [23] B.C. Fawcett, A. Ridgeley and T.P. Hughes, Line classifications for Ni XXV and XXVI and new observations of Fe XXIII and XXIV in laser-produced spectra, Monthly Notices of the Royal Astronomical Society 188 (2), 365 (September 1979).
  • [24] H. Gordon, M.G. Hobby and N.J. Peacock, Classification of the X-ray spectra of transitions in the Ne, F and O I isoelectronic sequences of the elements from iron to bromine and in the Na I isoelectronic sequence of gallium to bromine, J. Phys. B: Atomic and Molecular Physics 13 (10), 1985 (May 1980).
  • [25] U. Feldman, G.A. Doschek, R.D. Cowan and L. Cohen, Fluorine isoelectronic sequence, JOSA 63 (11), 1445 (November 1973).