Plasma and Fusion Research

Volume 18, 2101078 (2023)

Review Articles


Metastable Oxides with Magnetic Functionalities
Katsuhisa TANAKA
Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
(Received 29 January 2023 / Accepted 7 July 2023 / Published 28 August 2023)

Abstract

Inorganic solid-state materials comprise several types of polymorphs with different structures and properties. Among these, only one of the polymorphs is stable, whereas the others are metastable at ambient temperature and pressure. Sometimes, metastable phases exhibit more curious structures and properties and excellent functionalities than those of the stable phase. Such a phenomenon has been observed in magnetic properties of oxides as well. This paper presents some metastable oxides that manifest magnetic properties and functionalities never observed in their stable counterparts; ferrimagnetism of spinel-type ZnFe2O4 with high magnetization and a high magnetic-phase transition temperature; ferromagnetism observed in metastable Eu2+-based perovskite-type oxides, such as EuTiO3, EuZrO3, and EuHfO3; and ferromagnetism of the amorphous oxides containing a large amount of Eu2+ ions. Amorphous oxides clearly exhibiting ferromagnetic transition are very rare.


Keywords

oxide, metastable phase, magnetic properties, ferromagnetism, ferrimagnetism, zinc ferrite, perovskite, divalent europium, amorphous phase

DOI: 10.1585/pfr.18.2101078


References

  • [1] S. Chikazumi, Physics of Ferromagnetism, Vol. II (Shokabo, Tokyo, 1984) [in Japanese].
  • [2] M. Taguchi et al., Phys. Rev. Lett. 115, 256405 (2015).
  • [3] Y. Kajiwara et al., Nature 464, 262 (2010).
  • [4] J. Matsuno et al., Sci. Adv. 2, e1600304 (2016).
  • [5] Y. Onose et al., Science 329, 297 (2010).
  • [6] T. Kimura et al., Nature 426, 55 (2003).
  • [7] D. Vaknin et al., Phys. Rev. Lett. 92, 207201 (2004).
  • [8] Y. Yamasaki et al., Phys. Rev. Lett. 96, 207204 (2006).
  • [9] T.S. Boescke et al., Appl. Phys. Lett. 99, 102903 (2011).
  • [10] M. Kobayashi et al., IEEE J. Electron Dev. Soc. 6, 280 (2018).
  • [11] E.F. Westrum and D.M. Grimes, J. Phys. Chem. Solids 3, 44 (1957).
  • [12] C.M. Srivastava et al., Bull. Mater. Sci. 6, 27 (1984).
  • [13] K. Tanaka et al., J. Magn. Magn. Mater. 131, 120 (1994).
  • [14] K. Tanaka et al., J. Phys. Chem. Solids 59, 1611 (1998).
  • [15] K. Tanaka et al., J. Phys.: Condens. Matter 15, L469 (2003).
  • [16] S. Nakashima et al., J. Phys.: Condens. Matter 17, 137 (2005).
  • [17] S. Nakashima et al., Phys. Rev. B 75, 174443 (2007).
  • [18] K. Tanaka et al., J. Appl. Phys. 99, 106103 (2006).
  • [19] S. Nakashima et al., J. Ceram. Soc. Jpn., Supplement 112, S961 (2004).
  • [20] S. Nakashima et al., J. Magn. Magn. Mater. 310, 2543 (2007).
  • [21] N. F. Borrelli and J. A. Murphy, J. Appl. Phys. 42, 1120 (1971).
  • [22] H. Takeuchi, Jpn. J. Appl. Phys. 14, 1903 (1975).
  • [23] S. Wittekoek et al., Phys. Rev. B 12, 2777 (1975).
  • [24] T. Katsufuji and H. Takagi, Phys. Rev. B 64, 054415 (2001).
  • [25] T. Kolodiazhnyi et al., Appl. Phys. Lett. 96, 252901 (2010).
  • [26] Y. Zong et al., J. Solid State Chem. 183, 168 (2010).
  • [27] H. Akamatsu et al., Inorg. Chem. 51, 4560 (2012).
  • [28] C.J. Fennie and K.M. Rabe, Phys. Rev. Lett. 97, 267602 (2006).
  • [29] R. Ranjan et al., J. Phys.: Condens. Matter 19, 406217 (2007).
  • [30] K. Fujita et al., Appl. Phys. Lett. 94, 062512 (2009).
  • [31] J.H. Lee et al., Nature 466, 954 (2010).
  • [32] K. Tanaka et al., J. Mater. Res. 28, 1031 (2013).
  • [33] H. Akamatsu et al., Phys. Rev. B 83, 214421 (2011).
  • [34] C.L. Chien et al., Phys. Rev. B 10, 3913 (1974).
  • [35] H. Akamatsu et al., Adv. Funct. Mater. 23, 1864 (2013).
  • [36] A. Verhelst et al., Phys. Rev. B 11, 4427 (1975).
  • [37] H.R. Rechenberg et al., J. Appl. Phys. 49, 1638 (1978).
  • [38] J.P. Renard et al., Solid State Commun. 35, 41 (1980).
  • [39] J.P. Sanchez et al., J. Phys. C 17, 127 (1984).
  • [40] J.P. Sanchez and J.M. Friedt, J. Phys. (Paris) 43, 1707 (1982).
  • [41] J.L. Shaw et al., J. Non-Cryst. Solids 345, 245 (2004).
  • [42] H. Akamatsu et al., Phys. Rev. B 74, 012411 (2006).
  • [43] H. Akamatsu et al., J. Magn. Magn. Mater. 310, 1506 (2007).
  • [44] H. Akamatsu et al., J. Phys.: Condens. Matter 20, 235216 (2008).
  • [45] H. Akamatsu et al., Phys. Rev. B 80, 134408 (2009).
  • [46] H. Akamatsu et al., Phys. Rev. B 84, 144408 (2011).
  • [47] J. Schoenes et al., Phys. Status Solidi A 51, 173 (1979).
  • [48] H. Akamatsu et al., Phys. Rev. B 81, 014423 (2010).
  • [49] H. Akamatsu et al., Phys. Rev. B 82, 224403 (2010).
  • [50] L. NĂ©el, Ann. Physik 3, 137 (1948); 4, 249 (1949).
  • [51] M.D. Mukadam et al., Phys. Rev. B 72, 174408 (2005).
  • [52] R. Pauthenet, J. Appl. Phys. 29, 253 (1958).
  • [53] E.M. Gyorgy et al., J. Appl. Phys. 50, 2883 (1979).
  • [54] J. Moreau et al., J. Phys. Chem. Solids 32, 1315 (1971).
  • [55] S. Nakamura et al., J. Appl. Phys. 74, 5652 (1993).
  • [56] Y. Zong et al., J. Am. Ceram. Soc. 95, 716 (2012).
  • [57] T. Kawamoto et al., Phys. Rev. B 88, 024405 (2013).
  • [58] J.C. Suits and B.E. Argyle, J. Appl. Phys. 36, 1251 (1965).
  • [59] K. Onodera et al., Electron. Lett. 30, 1954 (1994).