Plasma and Fusion Research

Volume 18, 1402051 (2023)

Regular Articles


Kinetic Analysis of the Characteristics of Electron Cyclotron Heating Assisted Ohmic Start-Up in the Trapped Particle Configuration of a Tokamak
Naoto TSUJII, Iwao YAMADA, Yongtae KO, Akira EJIRI, Kouji SHINOHARA, Osamu WATANABE, Seowon JANG, Yi PENG, Kotaro IWASAKI, Yuting LIN, Yuita SHIRASAWA, Taichi HIDANO, Yiming TIAN and Fumiya ADACHI
The University of Tokyo, Kashiwa 277-8561, Japan
(Received 31 January 2023 / Accepted 9 May 2023 / Published 14 July 2023)

Abstract

Electron cyclotron heating (ECH) assisted start-up is considered to be necessary for reliable start-up of tokamaks with superconducting central solenoid (CS) because of the low loop voltage. Pure Ohmic start-up using the CS requires the field-null configuration to minimize electron loss. For ECH assisted Ohmic start-up, the trapped particle configuration (TPC) was found to have wider operational parameter space than the field-null configuration experimentally. In this work, we have analyzed electron transport under the TPC using the orbit-averaged kinetic equation. The global electron distribution function was simulated by solving for the steady-state distribution function. The parameter boundary for successful pre-ionization was estimated by evaluating the net particle number growth rate from the total ionization rate and the particle flux out of the limiter boundary. Upper limit of the ECH power was predicted as that for the net particle number to grow. In the absence of the inductive electric field, the simulated high ECH power limit increased with neutral pressure and vertical field strength, consistently with the experimental results. Application of loop voltage did not change this behavior qualitatively up to the inductive electric field of 0.48 V/m, which is the typical range of low voltage start-up experiments.


Keywords

electron cyclotron heating, orbit-averaged kinetic equation, fast electron transport

DOI: 10.1585/pfr.18.1402051


References

  • [1] Y. Gribov, D. Humphreys, K. Kajiwara, E.A. Lazarus, J.B. Lister, T. Ozeki, A. Portone, M. Shimada, A.C.C. Sips and J.C. Wesley, Nucl. Fusion 47, S385 (2007).
  • [2] H. Urano, T. Fujita, S. Ide, Y. Miyata, G. Matsunaga and M. Matsukawa, Fusion Eng. Des. 100, 345 (2015).
  • [3] E.A. Lazarus, A.W. Hyatt, G.L. Jackson and D.A. Humphreys, Nucl. Fusion 38, 1083 (1998).
  • [4] B. Lloyd, G.L. Jackson, T.S. Taylor, E.A. Lazarus, T.C. Luce and R. Prater, Nucl. Fusion 31, 2031 (1991).
  • [5] K. Kajiwara, Y. Ikeda, M. Seki, S. Moriyama, T. Oikawa, T. Fujii and JT-60 Team, Nucl. Fusion 45, 694 (2005).
  • [6] G.L. Jackson, J.S. deGrassie, C.P. Moeller and R. Prater, Nucl. Fusion 47, 257 (2007).
  • [7] A. Ejiri, Y. Takase, N. Tsujii, S. Yajima, H. Yamazaki and O. Mitarai, Nucl. Fusion 60, 036015 (2020).
  • [8] Y.H. An, J. Lee, J.G. Jo, B.-K. Jung, H.Y. Lee, K.-J. Chung, Y.-S. Na, T.S. Hahm and Y.S. Hwang, Nucl. Fusion 57, 016001 (2016).
  • [9] J. Lee, J. Kim, Y.H. An, M.-G. Yoo, Y.S. Hwang and Y.-S. Na, Nucl. Fusion 57, 126033 (2017).
  • [10] Y. Ko, N. Tsujii, Y. Takase, A. Ejiri, O. Watanabe, H. Yamazaki, K. Iwasaki, P. Yi, J.H.P. Rice, Y. Osawa, T. Wakatsuki, M. Yoshida and H. Urano, Plasma Fusion Res. 16, 1402056 (2021).
  • [11] C.B. Forest, Y.S. Hwang, M. Ono, G. Greene, T. Jones, W. Choe, M. Schaffer, A. Hyatt, T. Osborne, R.I. Pinsker, C.C. Petty, J. Lohr and S. Lippmann, Phys. Plasmas 1, 1568 (1994).
  • [12] M. Uchida, T. Yoshinaga, H. Tanaka and T. Maekawa, Phys. Rev. Lett. 104, 065001 (2010).
  • [13] A. Ejiri, Y. Takase, H. Kasahara, T. Yamada, K. Hanada, K.N. Sato, H. Zushi, K. Nakamura, M. Sakamoto, H. Idei, M. Hasegawa, A. Iyomasa, N. Imamura, K. Esaki, M. Kitaguchi, K. Sasaki, H. Hoshika, O. Mitarai and N. Nishino, Nucl. Fusion 46, 709 (2006).
  • [14] T. Maekawa, T. Yoshinaga, M. Uchida, F.Watanabe and H. Tanaka, Nucl. Fusion 52, 083008 (2012).
  • [15] J.C. Wright, A. Bader, L.A. Berry, P.T. Bonoli, R.W. Harvey, E.F. Jaeger, J.-P. Lee, A. Schmidt, E. D'Azevedo, I. Faust, C.K. Phillips and E. Valeo, Plasma Phys. Control. Fusion 56, 045007 (2014).
  • [16] Y.V. Petrov and R.W. Harvey, Plasma Phys. Control. Fusion 58, 115001 (2016).
  • [17] COMSOL Multiphysics ® www.comsol.com. COMSOL AB, Stockholm, Sweden.
  • [18] M.D. Carter, D.B. Batchelor and A.C. England, Nucl. Fusion 27, 985 (1987).
  • [19] D. Farina, Nucl. Fusion 58, 066012 (2018).
  • [20] J. Sugiyama, A. Ejiri, Y. Takase, O. Watanabe, Y. Adachi, H. Tojo, M. Sasaki, T. Masuda, T. Oosako and S. Kainaga, Plasma Fusion Res. 3, 026 (2008).
  • [21] A.D. Macdonald and S.C. Brown, Phys. Rev. 76, 1634 (1949).
  • [22] D.J. Rose, Phys. Rev. 104, 273 (1956).
  • [23] Y. Takase, A. Ejiri, N. Kasuya, T. Mashiko, S. Shiraiwa, L.M. Tozawa, T. Akiduki, H. Kasahara, Y. Nagashima, H. Nozato, H. Wada, H. Yamada, T. Yamada and K. Yamagishi, Nucl. Fusion 41, 1543 (2001).
  • [24] A. Ejiri and Y. Takase, Nucl. Fusion 47, 403 (2007).
  • [25] T.W. Shyn,W.E. Sharp and Y.-K. Kim, Phys. Rev. A 24, 79 (1981).
  • [26] T.H. Stix, Waves in Plasmas (American Institute of Physics, New York, 1992).