Plasma and Fusion Research

Volume 18, 1201086 (2023)

Rapid Communications


Observation of Quasi-Periodic Two-Dimensional Velocity Fields in Plasma Using Tomographic Laser-Induced Fluorescence Spectroscopy
Hiroyuki ARAKAWA1), Makoto SASAKI2), Shigeru INAGAKI3,4), Kenichiro TERASAKA5), Yuichi KAWACHI6), Fumiyoshi KIN3), Takuma YAMADA7,4), Yoshihiko NAGASHIMA8,4) and Akihide FUJISAWA8,4)
1)
Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
2)
College of Industrial Technology, Nihon University, Narashino 275-8575, Japan
3)
Institute of Advanced Energy, Kyoto University, Uji 611-0011, Japan
4)
Research Centre for Plasma Turbulence, Kyushu University, Kasuga 816-8580, Japan
5)
Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga 816-8580, Japan
6)
Department of Electrical and Electronic Engineering, Kyoto Institute of Technology, Kyoto 606-8585, Japan
7)
Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
8)
Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580, Japan
(Received 31 July 2023 / Accepted 5 September 2023 / Published 12 October 2023)

Abstract

Recently, a new method that applies vector tomography to laser-induced fluorescence has been introduced, enabling the measurement of quasi-periodic two-dimensional velocity field in plasma [H. Arakawa et al., Plasma Fusion Res. 18, 1401032 (2023)]. In this study, we experimentally demonstrated this method in a linear magnetized plasma and presented the initial measurement results. The observed two-dimensional velocity field allowed the evaluation of Reynolds force and its energy transfer.


Keywords

magnetized plasma, laser-induced fluorescence, vector tomography, velocity field, Reynolds force

DOI: 10.1585/pfr.18.1201086


References

  • [1] A. Fujisawa, A review of zonal flow experiments, Nucl. Fusion 49, 013001 (2009).
  • [2] R.A. Stern and J.A. Johnson, Plasma ion diagnostics using resonant fluorescence, Phys. Rev. Lett. 34(25), 1548 (1975).
  • [3] F. Anderegg, R.A. Stern, F. Skiff, B.A. Hammel, M.Q. Tran, P.J. Paris and P. Kohler, Ion heating due to rotation and collision in magnetized plasma, Phys. Rev. Lett. 57(3), 329 (1986).
  • [4] J. Howard, Vector tomography applications in plasma diagnostics, Plasma Phys. Control. Fusion 38(4), 489 (1996).
  • [5] A.L. Balandin, Y. Murata and Y. Ono, Radial velocity profile reconstruction by doppler spectroscopy measurements, Eur. Phys. J. D: Atomic, Molecular, Optical Plasma Phys. 27(2), 125 (2003).
  • [6] H. Arakawa, M. Sasaki, S. Inagaki and A. Fujisawa, Reynolds force evaluation of quasi-coherent structure by tomographic laser-induced fluorescence spectroscopy, Plasma Fusion Res. 18, 1401032 (2023).
  • [7] S. Inagaki, T. Kobayashi, Y. Kosuga, S.-I. Itoh, T. Mitsuzono, Y. Nagashima, H. Arakawa, T. Yamada, Y. Miwa, N. Kasuya et al., A concept of cross-ferroic plasma turbulence, Sci. Rep. 6, 22189 (2016).
  • [8] Y. Nagashima, A. Fujisawa, K. Yamasaki, S. Inagaki, C. Moon, F. Kin, Y. Kawachi, H. Arakawa, T. Yamada, T. Kobayashi et al., A proposal to evaluate electron temperature and electron density fluctuations using dual wavelength emission intensity tomography in a linear plasma, J. Phys. Soc. Jpn. 92(3), 033501 (2023).
  • [9] H. Arakawa, S. Inagaki, Y. Kosuga, M. Sasaki, F. Kin, K. Hasamada, K. Yamasaki, T. Kobayashi, T. Yamada, Y. Nagashima et al., Ion temperature measurement by laserinduced fluorescence spectroscopy in panta, IEEJ Trans. Electr. Electron. Eng. 14(10), 1450 (2019).
  • [10] J. Hseih, Computed Tomography - Principles, Design, Artifacts and Recent Advances, 01 2009.