Plasma and Fusion Research

Volume 17, 2406097 (2022)

Regular Articles


Core Diagnostics for WENDELSTEIN 7-X Steady-State Exploration Until 18 GJ
Matthias W. HIRSCH, Sebastian BANNMANN, Marc N. A. BEURSKENS, Christoph BIEDERMANN, Sergey BOZHENKOV, Kai-Jakob BRUNNER, Neha CHAUDHARY, Hannes DAMM, Oliver FORD, Juan GUERRERO-ARNAIZ, Gole FUCHERT, Xiang HAN1), Udo HÖFEL, Jia HUANG2), Jens KNAUER, Jean-Paul KOSCHINSKY, Andreas KRÄMER-FLECKEN2), Beate KURSINSKI, Andreas LANGENBERG, Samuel LAZERSON, Jens MEINEKE, Dimitry MOSEEV, Johan OOSTERBEEK, Novimir PABLANT3), Eckehard PASCH, Andreas PAVONE, Peter PÖLÖSKEI, Torsten RICHERT, Torsten STANGE, Matthias STEFFEN, Mathias STERN, Lilla VANÓ, Robert C. WOLF, Haoming M. XIANG2), Marco ZANINI, for the W7-X Team
Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
1)
Institute of Plasma Physics, Chinese Academy of Sciences, 230031 Hefei, Anhui, People's Republic of China
2)
Forschungszentrum Jülich GmbH, Institut für Energie-und Klimaforschung - Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich, Germany
3)
Princeton Plasma Physics Laboratory, US
(Received 7 January 2022 / Accepted 5 March 2022 / Published 26 August 2022)

Abstract

This contribution provides an overview of the core diagnostics as they are required for W7-X steady-state high-density operation with a divertor and profile control. The inferred profiles then address the stellarator optimization. A particular task is the characterization of fast ion slowing down and -losses, which in a classical stellarator reactor could result in unacceptable wall loads and ultimately are deleterious for the heating efficiency. The energy dissipated during operation, 10 MW · 1800 s impacts on the technical diagnostic realization via loads to in-vessel components, quasi steady-state operation requires adequate data acquisition and control systems.


Keywords

plasma diagnostics, steady-state operation, stellarator, W7-X, profile inference, fast-ion

DOI: 10.1585/pfr.17.2406097


References

  • [1] G. Grieger et al., Fusion Eng. Des. 25, 73 (1994).
  • [2] G. Fuchert et al., Nucl. Fusion 60, 036020 (2020).
  • [3] R.C. Wolf et al., Plasma Phys. Control. Fusion 61, 014037 (2019).
  • [4] H.P. Laqua et al., Nucl. Fusion 61, 106005 (2021).
  • [5] S.A. Bozhenkov et al., Nucl. Fusion 60, 066011D (2020).
  • [6] M.N.A. Beurskens et al., Nucl. Fusion 61, 116072 (2021).
  • [7] M. Krychowiak et al., Rev. Sci. Instrum. 87, 11D304 (2016).
  • [8] R. König et al., J. Instrum. 10, P10005 (2015).
  • [9] In summer 2020 a Temporary Working Group developed a proposal for the strategy of W7-X towards an assessment on the rector capability of the underlying HELIAS configuration as requested from the EUROfusion program for soon after 2030 as basis of a next device. The final report “W7-X strategy 2030” 1-YLF-T0000.0 has been submitted to and has been approved by the scientific board of directors.
  • [10] D. Zhang et al., Nucl. Fusion 61, 126002 (2021).
  • [11] D. Moseev et al., Nucl. Fusion 57, 036013 (2017).
  • [12] M. Hirsch et al., AIP Conf. Proc. 1612, 39 (2014).
  • [13] D. Zhang et al., 38th EPS Conference on Plasma Physics (2011), P5.056.
  • [14] J.W. Oosterbeek et al., 2021, Stray radiation exposure of vacuum windows in the MISTRAL facility, to be submitted to Fusion Eng. Des.
  • [15] K.J. Brunner et al., J. Instrum. 13, P09002 (2018).
  • [16] M. Zanini et al., Nucl. Fusion 60, 10602 (2020).
  • [17] J.W. Oosterbeek et al., Fusion Eng. Des. 146, A 959 (2021).
  • [18] N. Chaudhary et al., J. Instrum. 15, P09024 (2020).
  • [19] C. Chaudhary et al., Investigation of optically grey electron cyclotron harmonics in Wendelstein 7-X. Doctoral thesis, TU Berlin, http://dx.doi.org/10.14279/depositonce-12630., submitted to Plasma Phys. Control. Fusion (2021).
  • [20] W. Schneider et al., J. Instrum. 7, C03025 (2002).
  • [21] F. Gandini et al., Fusion Eng. Des. 56-57, 975 (2001).
  • [22] J. Svensson and A. Werner, Large Scale Bayesian Data Analysis for Nuclear Fusion Experiments, In: 2007 IEEE International Symposium on Intelligent Signal Processing (3rd - 5th Oct. 2007). Alcalá de Henares, Madrid, Spain, Oct. 2007.
  • [23] A. Pavone et al., Plasma Phys. Control. Fusion 61, 075012 (2019).
  • [24] E. Pasch et al., Rev. Sci. Instrum. 87, 11E729 (2016).
  • [25] H. Damm et al., J. Instrum. 14, C09037 (2019).
  • [26] S. Bozhenkov et al., J. Instrum. 12, P10004 (2017).
  • [27] G. Fuchert et al., submitted to J. Instrum. (2021).
  • [28] S. Bozhenkov et al., Rev. Sci. Instrum. 90, 033505 (2019).
  • [29] E.R. Scott et al., J. Instrum. 14, C10033 (2019).
  • [30] E. Pasch et al., Rev. Sci. Instrum. 89, 10C115 (2018).
  • [31] X.B. Peng et al., Fusion Eng. Des. 89, 318 (2014).
  • [32] K.J. Brunner et al., Design considerations of the European DEMO's IR-interferometer/polarimeter based on TRAVIS simulations, submitted to J. Instrum. as Proceedings of the International Conference on Diagnostics for Fusion Reactors, Varenna 2021.
  • [33] S. Zoletnik et al., Rev. Sci. Instrum. 89, 10D107 (2018).
  • [34] X. Han et al., Design and characterization of a dual-band X-mode reflectometer for the electron density profile measurement at the ICRH antenna on Wendelstein 7-X to be submitted to Rev. Sci. Instrum. (2022).
  • [35] M. Hirsch et al., EPJ Web of Conferences 203, 03007 (2019).
  • [36] U. Höfel et al., Rev. Sci. Instrum. 90, 043502 (2019).
  • [37] C. Fuchs and H.-J. Hartfuss, Rev. Sci. Instrum. 72, 382 (2001).
  • [38] S.P. Hirshman and J.C. Whitson, Phys. Fluids 26, 3553 (1983).
  • [39] N.B. Marushchenko et al., Comput. Phys. Commun. 185, 165, ISSN 0010-4655 (2014).
  • [40] M. Hirsch et al., 46th EPS Conference on Plasma Physics P2.1054 (2019).
  • [41] A. Langenberg et al., Rev. Sci. Instrum. 89, 10G101 (2018).
  • [42] N.A. Pablant et al., Phys. Plasmas 25, 022508 (2018).
  • [43] A. Langenberg et al., Phys. Plasmas 27, 052510 (2020).
  • [44] S. Kwak et al., Rev. Sci. Instrum. 92 (2021).
  • [45] S. Äkäslompolo et al., Nucl. Fusion 58, 082010 (2018).
  • [46] S. Lazerson et al., Nucl. Fusion 60, 076020 (2020).
  • [47] D. Moseev et al., Rev. Sci. Instrum. 90, 023501 (2019).
  • [48] D. Moseev et al., J. Instrum. 15, C0503 (2020).
  • [49] P. Poloskei et al., Experimental characterization of the active and passive fast-ion H-alpha emission in W7-X using FIDASIM, submitted to Nucl. Fusion (2021).
  • [50] D. Moseev et al., Rev. Sci. Instrum. 92, 033546 (2021).
  • [51] S. Bannmann et al., Feasibility of neutral particle analysis for fast-ion measurements at W7-X, submitted to J. Instrum. (2021).
  • [52] K. Ogawa et al., J. Instrum. 14, C09021 (2019).
  • [53] D. Kulla, S. Lazerson et al., Placement of a fast ion loss detector array for neutral beam injected particles in Wendelstein 7-X, accepted for publication Plasma Phys. Control. Fusion as 103670.R1 (2021).