Plasma and Fusion Research

Volume 17, 2406040 (2022)

Regular Articles

Surface Condition of Zn Target in a DC Reactive Magnetron Sputtering Plasma Source Using Water Vapor Plasma
Allen Vincent CATAPANG, Hirotaka TATEMATSU, Oliver M. STREETER, James A. HERNANDEZ II, Magdaleno R. VASQUEZ Jr.1) and Motoi WADA
Graduate School of Science and Engineering, Doshisha University, Kyoto 610-0394, Japan
Department of Mining, Metallurgical and Materials Engineering, College of Engineering, University of the Philippines Diliman, Quezon City 1101, Philippines
(Received 10 January 2022 / Accepted 7 March 2022 / Published 13 May 2022)


The effect of water vapor plasma upon the surface morphology of the Zn target contained in a reactive magnetron sputtering source is investigated. The surface roughness and composition at different regions of the target were characterized using laser microscopy and X-ray diffraction, and an in-situ method for optical evaluation using laser differential reflectance is explored. The formation of a redeposited layer was observed, and the target center where direct plasma erosion was minimized showed an enhanced redeposition layer at low water vapor content. The roughness of the center and racetrack, where the plasma touched down along the magnetic field, was found to decrease at increasing water vapor content. An increasing trend in the laser differential reflectance of the target at different plasma exposure and varying water vapor content were observed.


water vapor plasma, reactive magnetron sputtering, target surface, zinc oxide, differential reflectance spectroscopy

DOI: 10.1585/pfr.17.2406040


  • [1] K. Strijckmans, R. Schelfhout and D. Depla, J. Appl. Phys. 124, 241101 (2018).
  • [2] S. Berg and T. Nyberg, Thin Solid Films 476, 215 (2005).
  • [3] C.G. Van de Walle, Phys. Rev. Lett. 85, 5, 1012 (2000).
  • [4] Y. Kawamura, N. Hattori, N. Miyatake and Y. Uraoka, J. Vac. Sci. Technol. A 31, 01A142 (2013).
  • [5] F. Boydens, W.P. Leroy, R. Persoons and D. Depla, Thin Solid Films 531, 32 (2013).
  • [6] Y. Abe, K. Takamura, M. Kawamura and K. Sasaki, J. Vac. Sci. Technol. A 23, 1371 (2005).
  • [7] R. Schelfhout, K. Strijckmans, F. Boydens and D. Depla, Appl. Surf. Sci. 355, 743 (2015).
  • [8] H. Kwon and J. Yoh, Opt. Laser. Technol. 44, 1823 (2012).
  • [9] A. Navarro-Quezada, M. Aiglinger, E. Ghanbari, T. Wagner and P. Zeppenfield, Rev. Sci. Instrum. 86, 113108 (2015).
  • [10] M. Palummo, N. Witkowski, O. Pluchery, R. Del Sole and Y. Borensztein, Phys. Rev. B 79, 035327 (2009).
  • [11] R. Forker, M. Gruenewald and T. Fritz, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 108, 34 (2012).
  • [12] N. Braithwaite, Plasma Sources Sci. Technol. 9, 517 (2000).
  • [13] A. Sarani, A. Nikiforov and C. Leys, Phys. Plasmas 17, 063504 (2010).
  • [14] S. Long and R. Browner, Spectrochim. Acta 43B, 17, 1461 (1988).
  • [15] P. Ratliff and W. Harrison, Spectrochim. Acta 49B, 12-14, 1747 (1994).
  • [16] A. Catapang and M.Wada, Student Session Proceedings of the 40th JSST Annual International Conference on Simulation Technology (2021) pp.49-52.