Plasma and Fusion Research

Volume 17, 2406036 (2022)

Regular Articles


Effect of Oversized Factor on 0.1 THz Surface Wave Oscillator
Yuta ANNAKA, Kazuo OGURA1), Mao AOKI1), Shingo HAMADA1), Tsubasa KATO1) and Masaya ITO1)
Faculty of Engineering, Niigata University, Niigata 950-2181, Japan
1)
Graduated School of Science and Technology, Niigata University, Niigata 950-2181, Japan
(Received 7 January 2022 / Accepted 23 February 2022 / Published 22 April 2022)

Abstract

Surface wave oscillator (SWO) is an intense subterahertz wave source based on the interaction of an electron beam with a surface wave in a cylindrical corrugated waveguide (CCW). The oversized factor is a key parameter of SWO and is the ratio of the CCW diameter to the wavelength of a generated wave. In this study, we experimentally examine 0.1 THz SWO with different oversized factors of 10 and 7. For an oversized factor of 7, a kilowatt class radiation with a maximum efficiency of 8% is observed. SWO operation can be improved by decreasing the factor from 10 to 7.


Keywords

surface wave oscillator, oversized factor, intense terahertz radiation, electron beam device

DOI: 10.1585/pfr.17.2406036


References

  • [1] S.S. Dhillon et al., J. Phys. D: Appl. Phys. 50, 043001 (2017).
  • [2] Y. Annaka, K. Ogura, Y. Sato and M. Nakasone, Jpn. J. Appl. Phys. 59, SHHD02 (2020).
  • [3] N.S. Ginzburg, V. Yu. Zaslavsky, A.M. Malkin, A.S. Sergeev, I.V. Zotova, K.A. Sharypov, S.A. Shunailov, V.G. Shpak, M.R. Ul'masculov and M.I. Yalandin, Appl. Phys. Lett. 117, 183505 (2020).
  • [4] T. Saito, Y. Yamaguchi, Y. Tatematsu, M. Fukunari, T. Hirobe, S. Tanaka, R. Shinbayashi, T. Shimozuma, S. Kubo, K. Tanaka and M. Nishiura, Plasma Fusion Res. 12, 1206013 (2017).
  • [5] K. Ogura, K. Komiyama, M. Sakai, D. Yamada, H. Saito and H. Yamazaki, IEEJ Trans. FM 125, 733 (2005).
  • [6] M.T. San, K. Ogura, K. Kubota, Y. Annaka, K. Yambe and A. Sugawara, IEEE Trans. Plasma Sci. 46, 530 (2018).
  • [7] K. Ogura, Y. Annaka, Y. Hoshi and T. Takahashi, IEEE Trans. Plasma Sci. 49, 40 (2021).
  • [8] K. Yambe, K. Ogura, S. Hasegawa, T. Shinada, T. Iwasaki and T. Furuichi, IEEE Trans. Plasma Sci. 41, 2781 (2013).
  • [9] S. Silver, Microwave Antenna Theory and Design, Chap. 10 (McGRAW-HILL BOOK COMPANY, 1949).
  • [10] M. Aoki, Y. Annaka, K. Ogura and M. Ito, Jpn. J. Appl. Phys. 60, 096004 (2021).
  • [11] S. Gong, K. Ogura, K. Yambe, S. Nomizu, A. Shirai, K. Yamazaki, J. Kawamura, T. Miura, S. Takanashi and M.T. San, J. Appl. Phys. 118, 123101 (2015).
  • [12] Y. Annaka, K. Ogura, K. Rachi, Y. Hoshi, S. Kubo, T. Shimozuma, S. Kobayashi and K. Okada, IEEE Trans. Plasma Sci. 49, 33 (2021).
  • [13] S. Aoyama, Y. Miyazawa, K. Ogura, A. Sugawara and M. Hirata, Fusion Sci. Technol. 51, 325 (2007).
  • [14] Y. Annaka, K. Ogura, K. Ozawa, K. Sekine and M.T. San, Phys. Plasma 25, 063115 (2018).