Plasma and Fusion Research

Volume 17, 2405033 (2022)

Regular Articles


Cyogenic Thermal Conductivity Measurements of Yb:YAG Ceramics
Akifumi IWAMOTO1,2), Aurelien FOUR3) and Bertrand BAUDOUY3)
1)
National Institute for Fusion Science, National Institutes of Natural Sciences, 322-6 Oroshi, Toki, Gifu 509-5292, Japan
2)
Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871, Japan
3)
Université Paris-Saclay, CEA, Département des Accélérateurs, de la Cryogénie et du Magnétisme, Gif-sur-Yvette, 91191, France
(Received 11 January 2022 / Accepted 15 February 2022 / Published 13 May 2022)

Abstract

Thermal conductivity of 9.8 at% Ytterbium-doped Yttrium Aluminum Garnet (Yb:YAG) ceramics has been measured by three systems at Commissariat à l'Énergie Atomique et aux énergies alternatives (CEA Paris-Saclay) and at the National Institute for Fusion Science (NIFS). For accurate measurements, thermal impedances in thermal systems should be negligibly small. However, each system includes some thermal impedance in a heat flow path. This paper describes that thermal conductivity of the 9.8% doped Yb:YAG ceramics and discusses the compensation method for thermal impedance in each system.


Keywords

thermal conductivity, Yb:YAG, cryogenic, steady-state differential method

DOI: 10.1585/pfr.17.2405033


References

  • [1] D.J. Ripom, J.R. Ochoa, R.L. Aggarwal and T.Y. Fan, Opt. Lett. 29, 2154 (2004).
  • [2] T. Sekine, T. Kurita, M. Kurita, T. Morita, Y. Hatano, Y. Muramatsu, T.Watari, Y. Kabeya, T. Iguchi, R. Yoshimura, Y. Tamaoki, Y. Takeuchi, Y. Mizuta, K. Kawai, Y, Zheng, Y. Kato, T. Suzuki, N. Kurita, T. Kawashima, S. Tokita, J. Kawanaka, N. Ozaki, Y. Hironaka, K. Shigemori, R. Kodama, R. Kuroda and E. Miura, High Energy Density Phys. 36, 100800 (2020).
  • [3] K. Tomabechi, Y. Kozaki, T. Norimatsu and Members of Reactor Design Committee, J. Phys. IV France 133, 791 (2006).
  • [4] T. Norimatsu, J. Kawanaka, M. Miyanaga, H. Azechi, K. Mima, H. Furukawa, Y. Kozaki and K. Tomabechi, Fusion Sci. Technol. 52, 893 (2007).
  • [5] R.L. Aggarwal, D.J. Ripin, J.R. Ochoa and T.Y. Fan, J. Appl. Phys. 98, 103514 (2005).
  • [6] J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani and A.A. Kaminskii, Appl. Phys. B 79, 25 (2004).
  • [7] T. Numazawa, O. Arai, Q. Hu and T. Noda, Meas. Sci. Technol. 12, 2089 (2001).
  • [8] H. Yagi, T. Yanagitani, T. Numazawa and K. Ueda, Ceram. Int. 33, 711 (2007).
  • [9] R. Yasuhara, H. Furuse, A. Iwamoto, J. Kawanaka and T. Yanagitani, Opt. Express 20, 29531 (2012).
  • [10] B. Baudouy and A. Four, Cryogenics 60, 1 (2014).
  • [11] A. Iwamoto, R. Maekawa and T. Mito, Adv. Cryo. Eng. 49, 643 (2004).
  • [12] H. Fujishiro, T. Naito, M. Ikebe and K. Noto, J. Cryo. Super. Soc. Jpn. 28, 533 (1993) (in Japanese).
  • [13] C.L. Tsai, H. Weinstock and W.C. Overton, Cryogenics 18, 562 (1978).
  • [14] F. Rondeaux, Ph. Bredy and J.M. Rey, Adv. Cryo. Eng. 48, 197 (2002).
  • [15] F.F.T. de Araujo and H.M. Rosenberg, J. Phys. D: Appl. Phys. 9, 665 (1976).
  • [16] Lake shore Cryogenics, Inc. data sheet.