Plasma and Fusion Research

Volume 17, 2403063 (2022)

Regular Articles

Prediction of Neutron Emission Rate in Deuterium Neutral Beam Heated CFQS Plasmas Using FIT3D-DD Code
Ryosuke SEKI1), Kunihiro OGAWA1,2), Mitsutaka ISOBE1,2), Sadayoshi MURAKAMI3), Hideo NUGA1), Akihiro SHIMIZU1,2), Shoichi OKAMURA1), Hiromi TAKAHASHI1,2), Tetsutaro OISHI1,2), Shigeyoshi KINOSHITA1), Takanori MURASE1), Sho NAKAGAWA1), Hiroyuki TANOUE1), Masaki OSAKABE1,2), Haifeng LIU4) and Yuhong XU4)
National Institute for Fusion Science, National Institutes of Natural Sciences, 322-6 Oroshi-cho, Toki-city, Gifu 509-5292, Japan
The Graduate University for Advanced Studies, SOKENDAI, 322-6 Oroshi-cho, Toki-city, Gifu 509-5292, Japan
Kyoto University, Kyoto 615-8540, Japan
Southwest Jiaotong University, Sha Xi Mei Shi Yi Tiao Jie, Jinniu District, Chengdu, Sichuan, China
(Received 8 January 2022 / Accepted 24 March 2022 / Published 22 June 2022)


FIT3D-DD code, which is a neutron emission and heating efficiency evaluation code based on a simple analytical solution of the Fokker-Planck equation, was applied to deuterium Chinese first quasi-axisymmetric stellarator (CFQS) plasmas heated by a deuterium neutral beam injector. A database of the neutron emission rate due to the beam-bulk D-D fusion reaction in the CFQS was created with the electron temperature and density, which were evaluated from the energy confinement time using ISS04 scaling. The neutron emission rate increases monotonically with the increase in the electron temperature and density. The neutron emission rate is expected to be up to ∼2.7 × 1012 [n/s] for an electron density of less than 4 × 1019 m−3.


quasi-axisymmetric stellarator, CFQS, prediction of neutron emission rate, a simple Fokker-Planck code, FIT3D-DD

DOI: 10.1585/pfr.17.2403063


  • [1] M. Isobe et al., Plasma Fusion Res. 14, 3402074 (2019).
  • [2] H. Liu et al., Plasma Fusion Res. 13, 3405067 (2018).
  • [3] A. Shimizu et al., Nucl. Fusion 62, 016010 (2022).
  • [4] K. Ogawa et al., Plasma Fusion Res. 14, 3402067 (2019).
  • [5] R. Seki et al., Plasma Fusion Res. 14, 3402126 (2019).
  • [6] S. Murakami et al., Trans. Fusion Technol. 27, 256 (1995).
  • [7] S. Suzuki et al., Plasma Phys. Control. Fusion 40, 2097 (1998).
  • [8] P. Vincenzi, et al., Plasma Phys. Control. Fusion 58, 124008 (2016).
  • [9] J.D. Huba, NRL Plasma Formulary (Naval Research Laboratory 2001) p.44.
  • [10] H. Yamada et al., Nucl. Fusion 45, 1684 (2005).