Plasma and Fusion Research

Volume 17, 2402023 (2022)

Regular Articles


Estimation of the Tritium Yields in Deuterium Fusion Plasmas Considering the Fast-Ion Velocity Distribution Function
Hideo NUGA1), Ryosuke SEKI1,2), Kunihiro OGAWA1,2), Shuji KAMIO1), Yutaka FUJIWARA3), Hiroyuki YAMAGUCHI1,2), Masaki OSAKABE1,2), Mitsutaka ISOBE1,2) and Masayuki YOKOYAMA1,2)
1)
National Institute for Fusion Science, National Institutes of Natural Sciences, Toki 509-5292, Japan
2)
The Graduate University for Advanced Studies, SOKENDAI, Toki 509-5292, Japan
3)
NTT Space Environment and Energy Laboratories, Tokyo 180-8585, Japan
(Received 19 December 2021 / Accepted 12 February 2022 / Published 22 April 2022)

Abstract

Tritium yields due to the deuterium-deuterium fusion reaction during the 22nd LHD experiment campaign are numerically estimated. As usual, the total tritium yields are assumed to be the same total neutron yields. In the Large Helical Device (LHD), however, it is considered that fusion reactivity of the D(d,p)T branch is lower than that of the D(d,n)3He one because the fusion reaction between a fast-deuteron and a thermal deuteron is dominant. By integrated simulation, considering the velocity distribution function of fast-deuteron, the ratio of the tritium yields to the neutron yields is estimated to be Yt/Yn ∼ 0.936. From the assumptions applied in the simulation, it is expected that this value should be still an over-estimation rather than the actual value.


Keywords

LHD, deuterium experiment, neutron measurement, integrated simulation, tritium inventory

DOI: 10.1585/pfr.17.2402023


References

  • [1] H.-S. Bosch and G. Hale, Nucl. Fusion 32, 611 (1992).
  • [2] Y. Takeiri, IEEE Trans. Plasma Sci. 46, 2348 (2018).
  • [3] Y. Takeiri, IEEE Trans. Plasma Sci. 46, 1141 (2018).
  • [4] M. Osakabe, M. Isobe, M. Tanaka et al., IEEE Trans. Plasma Sci. 46, 2324 (2018).
  • [5] M. Osakabe, Y. Takeiri, T. Morisaki et al., Fusion Sci. Technol. 72, 199 (2017).
  • [6] Y. Takeiri, O. Kaneko, K. Tsumori et al., Fusion Sci. Technol. 58, 482 (2010).
  • [7] H. Nakamura, S. Sakurai, S. Suzuki et al., Fusion Eng. Des. 81, 1339 (2006).
  • [8] I. Cristescu, I. Cristescu, L. Doerr et al., Nucl. Fusion 47, S458 (2007).
  • [9] T. Tanabe, Fusion Eng. Des. 87, 722 (2012).
  • [10] M. Tanaka, N. Suzuki and H. Kato, J. Nucl. Sci. Technol. 57, 1297 (2020).
  • [11] S. Masuzaki, T. Otsuka, K. Ogawa et al., Physica Scripta 2020, 014068 (2020).
  • [12] M. Tanaka, H. Kato, N. Suzuki et al., Plasma Fusion Res. 15, 1405062 (2020).
  • [13] M. Isobe, K. Ogawa, H. Miyake et al., Rev. Sci. Instrum. 85, 11E114 (2014).
  • [14] M. Isobe, K. Ogawa, T. Nishitani et al., IEEE Trans. Plasma Sci. 46, 2050 (2018).
  • [15] D. Ito, H. Yazawa, M. Tomitaka et al., Plasma Fusion Res. 16, 1405018 (2021).
  • [16] D. Mikkelsen, Nucl. Fusion 29, 1113 (1989).
  • [17] M. Yokoyama, R. Seki, C. Suzuki et al., Nucl. Fusion 57, 126016 (2017).
  • [18] S.P. Hirshman and J. Whitson, Phys. Fluids 26, 3553 (1983).
  • [19] C. Suzuki, K. Ida, Y. Suzuki et al., Plasma Phys. Control. Fusion 55, 014016 (2012).
  • [20] S. Murakami, N. Nakajima and M. Okamoto, Trans. Fusion Technol. 27, 256 (1995).
  • [21] M. Sato, S. Murakami, A. Fukuyama et al., Proc. 18th Int. Toki Conf, 2008.
  • [22] P. Vincenzi, T. Bolzonella, S. Murakami et al., Plasma Phys. Control. Fusion 58, 125008 (2016).
  • [23] R. Seki, K. Ogawa, M. Isobe et al., Plasma Fusion Res. 14, 3402126 (2019).
  • [24] K. Narihara, I. Yamada, H. Hayashi et al., Rev. Sci. Instrum. 72, 1122 (2001).
  • [25] I. Yamada, K. Narihara, H. Funaba et al., Fusion Sci. Technol. 58, 345 (2010).
  • [26] H. Nuga, R. Seki, K. Ogawa et al., J. Plasma Phys. 86, 815860306 (2020).
  • [27] R. Seki, S. Kamio, H. Kasahara et al., Plasma Fusion Res. 15, 1202088 (2020).
  • [28] K. Ogawa, M. Isobe, T. Nishitani et al., Nucl. Fusion 59, 076017 (2019).
  • [29] M. Emoto, C. Suzuki, M. Yokoyama et al., Fusion Sci. Technol. 74, 161 (2018).