Plasma and Fusion Research

Volume 17, 2402008 (2022)

Regular Articles


Recent Progress of Neutron Spectrometer Development for LHD Deuterium Plasmas
Mitsutaka ISOBE1,2), Kunihiro OGAWA1,2), Siriyaporn SANGAROON3), Guoqiang ZHONG4) and Tieshuan FAN5)
1)
National Institute for Fusion Science, National Institutes of Natural Sciences, Toki 509-5292, Japan
2)
The Graduate University for Advanced Studies, SOKENDAI, Toki 509-5292, Japan
3)
Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
4)
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
5)
State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People's Republic of China
(Received 10 January 2022 / Accepted 31 January 2022 / Published 18 March 2022)

Abstract

The commissioning of three different types of D-D neutron energy spectrometer has been performed in the Large Helical Device (LHD) to accelerate energetic-ion physics studies in a non-axisymmetric system. Because the LHD is equipped with negative-ion-source-based tangential neutral beam injectors (N-NBs) characterized by high energy up to 180∼190 keV, a significant Doppler shift of D-D neutron energy from 2.45 MeV is expected. Two different compact neutron energy spectrometers, i.e., a conventional liquid organic scintillator, designated as EJ-301, and a newly developed Cs2LiYCl6:Ce with 7Li-enrichment called CLYC7, having tangential sightlines, have shown up- and/or down-shifted D-D neutron energy, as expected according to the direction of N-NB injection. In addition, with the aim of study on a perpendicular energetic ion tail, created by wave heating with ion cyclotron resonance frequency, a neutron energy spectrometer named the Time of Flight Enhanced Diagnostic (TOFED) is being developed. The TOFED is based on a time-of-flight technique and is characterized by high-energy-resolution and a high-counting-rate capability. Commissioning of the TOFED is now ongoing. Recent advances of neutron energy spectrometer development for LHD deuterium plasmas are described.


Keywords

LHD, NBI, deuterium plasma, energetic ion, neutron, Doppler shift

DOI: 10.1585/pfr.17.2402008


References

  • [1] W.R. Faust and E.G. Harris. Nucl. Fusion 1, 62 (1960).
  • [2] G. Lehner and F. Pohl, Z. Phys. 207, 83 (1967).
  • [3] H. Brysk, Plasma Phys. 15, 611 (1973).
  • [4] T. Elevent, Nucl. Instrum. Methods 185, 313 (1981).
  • [5] J. Scheffel, Nucl. Instrum. Methods 224, 519 (1984).
  • [6] G. Gorini et al., Rev. Sci. Instrum. 68, 561 (1997).
  • [7] B. Bigot, Nucl. Fusion 59, 112001 (2019).
  • [8] G. Zhuang et al., Nucl. Fusion 59, 112010 (2019).
  • [9] J.D. Strachan et al., Nature 279, 626 (1979).
  • [10] T. Elevent and M. Olsson, Nucl. Instrum. Methods Phys. Res. A 238, 147 (1985).
  • [11] G. Grosshög et al., Nucl. Instrum. Methods Phys. Res. A 249, 468 (1986).
  • [12] J. Källne and H. Enge, Nucl. Instrum. Methods Phys. Res. A 311, 595 (1992).
  • [13] M. Osakabe et al., Rev. Sci. Instrum. 65, 1636 (1994).
  • [14] A.V. Krasilnikov et al., Nucl. Instrum. Methods Phys. Res. A 476, 500 (2002).
  • [15] M. Gatu Johnson et al., Rev. Sci. Instrum. 77, 10E702 (2006).
  • [16] Y. Zhang et al., J. Fusion Energy 40, 14 (2021).
  • [17] Y. Takeiri, IEEE Trans. Plasma Sci. 46, 2348 (2018).
  • [18] M. Isobe et al., IEEE Trans. Plasma Sci. 46, 2050 (2018).
  • [19] M. Isobe et al., Nucl. Fusion 58, 082004 (2018).
  • [20] K. Ogawa et al., Nucl. Fusion 59, 076017 (2019).
  • [21] K. Ogawa et al., Plasma Fusion Res. 16, 1102023 (2021).
  • [22] https://eljentechnology.com/products/liquid-scintillators/ej-301-ej-309
  • [23] D. Rigamonti et al., JINST 14, C09025 (2019).
  • [24] S. Sangaroon et al., JINST 16, C12025 (2021).
  • [25] Y.M. Zhang et al., J. Fusion Energy 40, 14 (2021).
  • [26] Y.M. Zhang et al., Rev. Sci. Instrum. 92, 053547 (2021).
  • [27] Y. Takeiri et al., Fusion Sci. Technol. 58, 482 (2010).
  • [28] W.J. Price, Nuclear Radiation Detection (McGraw-Hill Book Company, Inc., New York, 1958) p. 273.
  • [29] M. Baba et al., Nucl. Instrum. Methods Phys. A 376, 115 (1996).
  • [30] D. Slaughter and R. Strout, II, Nucl. Instrum. Methods 198, 349 (1982).
  • [31] V.V. Verbinski et al., Nucl. Instrum. Methods 65, 8 (1968).
  • [32] https://eljentechnology.com/products/plastic-scintillators/ej-228-ej-230
  • [33] S. Sangaroon et al., Fusion Eng. Des. 166, 112296 (2021).