Plasma and Fusion Research

Volume 17, 2102101 (2022)

Review Articles


Pellet Core Fueling in Tokamaks, Stellarators and Reversed Field Pinches
Eléonore GEULIN and Bernard PÉGOURIÉ
CEA, IRFM, 13108 Saint-Paul-Lez-Durance, France
(Received 3 February 2022 / Accepted 13 March 2022 / Published 28 October 2022)

Abstract

In a reactor grade device, the role of core fueling is to replace the D and T consumed in the fusion reactions (almost negligible) and to compensate the plasma losses through the separatrix - including the material expelled out by the ELMs. For this purpose, deep material deposition is an advantage and pellet injection the best candidate for fueling the future machines. Fueling by pellet injection consists in two phases: First, the pellet ablation itself, then the ablated material homogenization and drift in the discharge. The former is a self-regulated process, which depends only of the local plasma characteristics. The second is a global phenomenon, which depends on the whole magnetic configuration. In this paper, we discuss first the basics of the ablation physics, emphasizing the role of the fast particles - ions and electrons - resulting from NBI or wave heating; then we describe the homogenization process and associated ∇B-induced drift. The drift acceleration and damping processes are described as well as the influence of the magnetic configuration (tokamak, stellarator and reversed field pinch) on the predominance of a given damping process and its consequence on the resulting deposition profile. We finally review the last results relative to pellet fueling in these different kind of devices and present the ongoing projects for future large-scale machines.


Keywords

fueling, pellet, stellarator, reversed field pinche, ablation, homogenization

DOI: 10.1585/pfr.17.2102101


References

  • [1] M. Romanelli et al., Nucl. Fusion 55, 093008 (2015).
  • [2] B. Pégourié et al., Plasma Phys. Control. Fusion 49, R87 (2007).
  • [3] B. Pégourié et al., Plasma Phys. Control. Fusion 51, 124023 (2009).
  • [4] S.K. Combs and L.R. Baylor, Fusion Sci. Technol. 73, 493 (2018).
  • [5] R. Raman, Fusion Eng. Des. 83, 1368 (2008).
  • [6] W.A. Houlberg et al., Nucl. Fusion 28, 595 (1988).
  • [7] P.B. Parks et al., Nucl. Fusion 17, 5539 (1977).
  • [8] N. Bosviel et al., Phys. Plasma 28, 012506 (2021).
  • [9] R. Samulyak et al., Nucl. Fusion 61, 046007 (2021).
  • [10] V.A. Rozhansky and I.Yu. Senichenkov, Plasma Phys. Rep. 31, 993 (2005).
  • [11] Y. Nakamura et al., Nucl. Fusion 32, 2229 (1992).
  • [12] B. Pégourié et al., Plasma Phys. Control. Fusion 47, 17 (2005).
  • [13] A. Matsuyama et al., Plasma Phys. Control. Fusion 54, 035007 (2012).
  • [14] A. Bortolon et al., Nucl. Fusion 59, 084003 (2019).
  • [15] K.J. McCarthy et al., Plasma Phys. Control. Fusion 61, 014013 (2019).
  • [16] A.M. Arnold et al., Plasma Phys. Control. Fusion 63, 095008 (2021).
  • [17] V.A. Rozhansky et al., Plasma Phys. Control. Fusion 37, 399 (1995).
  • [18] P.B. Parks and L.R. Baylor, Phys. Rev. Lett. 94, 125002 (2005).
  • [19] P.B. Parks et al., Phys. Plasma 7, 1968 (2000).
  • [20] B. Pégourié et al., Nucl. Fusion 47, 44 (2007).
  • [21] V.A. Rozhansky et al., Plasma Phys. Control. Fusion 46, 575 (2004).
  • [22] A. Matsuyama et al., Nucl. Fusion 52, 123017 (2012).
  • [23] R. Ishizaki and N. Nakajima, Plasma Phys. Control. Fusion 53, 054009 (2011).
  • [24] R. Sakamoto et al., Nucl. Fusion 53, 063007 (2013).
  • [25] A. Canton et al., Plasma Phys. Control. Fusion 43, 225 (2001).
  • [26] A.R. Polevoi and M. Shimada, Plasma Phys. Control. Fusion 43, 1525 (2001).
  • [27] F. Köchl et al., Prepr. EFDA-JET-PR(12) 57, 82 (2012).
  • [28] N. Panadero et al., ECA-43C.
  • [29] L. Garzotti et al., Nucl. Fusion 50, 100502 (2010).
  • [30] N. Commaux et al., Nucl. Fusion 50, 025011 (2010).
  • [31] N. Hayashi et al., Nucl. Fusion 51, 103030 (2011).
  • [32] N. Panadero et al., Nucl. Fusion 58, 026025 (2018).
  • [33] B. Pégourié et al., J. Nucl. Mater. 313-316, 539 (2003).
  • [34] L.R. Baylor et al., Nucl. Fusion 47, 1598 (2007).
  • [35] A. Géraud et al., J. Nucl. Mater. 337-339, 485 (2005).
  • [36] M. Valovic et al., Nucl. Fusion 52, 114022 (2012).
  • [37] M. Valovic et al., Nucl. Fusion 55, 013011 (2015).
  • [38] P.T. Lang et al., Nucl. Fusion 52, 023017 (2012).
  • [39] M. Valovic et al., Plasma Phys. Control. Fusion 60, 085013 (2018).
  • [40] M. Valovic et al., Nucl. Fusion 60, 054006 (2020).
  • [41] P.T. Lang et al., Nucl. Fusion 54, 083009 (2014).
  • [42] P.T. Lang et al., Nucl. Fusion 52, 023017 (2012).
  • [43] R. Sakamoto et al., Nucl. Fusion 41, 381 (2001).
  • [44] C.D. Beidler et al., Plasma Phys. Control. Fusion 60, 105008 (2018).
  • [45] J. Baldzuhn et al., Plasma Phys. Control. Fusion 60, 035006 (2018).
  • [46] J. Baldzuhn et al., Plasma Phys. Control. Fusion 61, 095012 (2019).
  • [47] J. Baldzuhn et al., Plasma Phys. Control. Fusion 62, 055012 (2020).
  • [48] S.A. Bozhenkov et al., Nucl. Fusion 60, 066011 (2020).
  • [49] H. Yamada et al., Nucl. Fusion 45, 1684 (2005).
  • [50] T. Morisaki et al., Phys. Plasmas 14, 056113 (2007).
  • [51] S. Ohdachi et al., Nucl. Fusion 57, 066042 (2017).
  • [52] K.J. McCarthy et al., Nucl. Fusion 57, 056039 (2017).
  • [53] J.L. Velasco et al., Plasma Phys. Control. Fusion 58, 084004 (2016).
  • [54] G. Motojima et al., Plasma Phys. Control. Fusion 61, 075014 (2019).
  • [55] R. Lorenzini et al., Plasma Phys. Control. Fusion 44, 233 (2002).
  • [56] M. D. Wyman et al., Nucl. Fusion 49, 015003 (2009).
  • [57] B. Pégourié et al., ECA-40A, 4.076 (2017).
  • [58] P.T. Lang et al., Fusion Eng. Des. 96-97, 123 (2015).
  • [59] F. Janky et al., DEMO Control Challenges, 31st SOFT.
  • [60] B. Ploeckl et al., Fusion Sci. Technol. 77, 266 (2021).
  • [61] G. Giruzzi et al., Plasma Phys. Control. Fusion 62, 014009 (2020).
  • [62] M. Shimada et al., Nucl. Fusion 47, S1 (2007).
  • [63] K. Tobita et al., Fusion Sci. Technol. 75, 372 (2019).
  • [64] G. Federici et al., Nucl. Fusion 59, 066013 (2019).
  • [65] A. Sagara et al., Fusion Eng. Des. 87, 594 (2012).
  • [66] P.T. Lang et al., Fusion Sci. Technol. 75, 178 (2019).
  • [67] A.S. Kukushkin et al., J. Nucl. Mater. 415, S497 (2011).
  • [68] L. Garzotti et al., Nucl. Fusion 52, 013002 (2012).
  • [69] F. Koechl et al., Nucl. Fusion 60, 066015 (2020).
  • [70] S.K. Combs et al., Fusion Eng. Des. 87, 634 (2012).
  • [71] S. Tokugana et al., Fusion Eng. Des. 123, 620 (2017).
  • [72] P. Vincenzi et al., Nucl. Fusion 55, 113028 (2015).
  • [73] A. Frattolillo et al., Fusion Eng. Des. 162, 112138 (2021).
  • [74] R. Sakamoto and H. Yamada, IEEE Trans. Plasma Sci. 44, 2915 (2016).
  • [75] T. Goto et al., Fusion Eng. Des. 89, 2451 (2014).
  • [76] R. Sakamoto and H. Yamada, Fusion Eng. Des. 89, 812 (2014).