Plasma and Fusion Research

Volume 17, 1406070 (2022)

Regular Articles


Estimation of Vibrational Temperatures of N2 and CO2 in Low-Pressure Electron Cyclotron Resonance Plasmas by Threshold Ionization Mass Spectrometry
Shinnosuke HOSOYAMA, Masahiro YAMAZAKI and Koichi SASAKI
Division of Applied Quantum Science and Engineering, Hokkaido University, Sapporo 060-8628, Japan
(Received 16 March 2022 / Accepted 23 April 2022 / Published 15 June 2022)

Abstract

This paper demonstrates the estimation of vibrational temperatures of N2 and CO2 in low-pressure plasmas by threshold ionization mass spectrometry. The principle for the estimation is the decrease in the ionization potential by the vibrational excitation. We observed that the threshold ionization curves of N2 and CO2, which were measured using a quadrupole mass spectrometer with an energy-variable electron beam, shifted toward the low-energy side, when they were sampled from the plasmas. We constructed a model which assumed a Boltzmann distribution for the population densities of vibrational excited states and the same cross sections of electron impact ionization for vibrational excited states except the shifts of the threshold energies. The vibrational temperatures were estimated by fitting the experimental threshold ionization curves with the model.


Keywords

threshold ionization mass spectrometry, vibrational temperature, molecular nitrogen, carbon dioxide, low-pressure plasma

DOI: 10.1585/pfr.17.1406070


References

  • [1] P. Capezzuto, F. Cramarossa, R. d'Agostino and E. Molinari, J. Phys. Chem. 80, 882 (1976).
  • [2] T. Nunnally, K. Gutsol, A. Rabinovich, A. Fridman, A. Gutsol and A. Kemoun, J. Phys. D: Appl. Phys. 44, 274009 (2011).
  • [3] D.L. Pietanza, G. Colonna, G. D'Ammando, A. Laricchiuta and M. Capitelli, Plasma Sources Sci. Technol. 24, 042002 (2015).
  • [4] C. Stewig, S. Scüttler, T. Urbanietz, M. Böke and A. von Keudell, J. Phys. D: Appl. Phys. 53, 125205 (2020).
  • [5] M. Yamazaki, S. Nishiyama and K. Sasaki, Plasma Sources Sci. Technol. 29, 115016 (2020).
  • [6] T. Koźak and A. Bogaerts, Plasma Sources Sci. Technol. 23, 045004 (2014).
  • [7] Z. Sheng, Y. Watanabe, H.-H. Kim, S. Yao and T. Nozaki, Chem. Eng. J. 399, 125751 (2020).
  • [8] Z. Sheng, H.-H. Kim, S. Yao and T. Nozaki, Phys. Chem. Chem. Phys. 22, 19349 (2020).
  • [9] X. Chen, Z. Sheng, S. Murata, S. Zen, H.-H. Kim and T. Nozaki, J. CO2 Utilization 54, 101771 (2021).
  • [10] C.T. Rettner, D.J. Auerbach and H.A. Michelsen, Phys. Rev. Lett. 68, 1164 (1992).
  • [11] H. Ueta, L. Chen, R.D. Beck, I. Colon-Diaz and B. Jackson, Phys. Chem. Chem. Phys. 15, 20526 (2013).
  • [12] J. Quan, F. Muttaqien, T. Kondo, T. Kozarashi, T. Mogi, T. Imabayashi, Y. Hamamoto, K. Inagaki, I. Hamada, Y. Morikawa and J. Nakamura, Nat. Chem. 11, 722 (2019).
  • [13] B.L.M. Klarenaar, R. Engeln, D.C.M. van den Bekerom, M.C.M. van de Sanden, A.S. Morillo-Candas and O. Guaitella, Plasma Sources Sci. Technol. 26, 115008 (2017).
  • [14] E. Plönjes, P. Palm, W. Lee, M.D. Chidley, I.V. Adamovich, W.R. Lempert and J.W. Rich, Chem. Phys. 260, 353 (2000).
  • [15] D.C.M. van den Bekerom, A. van de Steeg, M.C.M. van de Sanden and G.J. van Rooij, J. Phys. D: Appl. Phys. 53, 054002 (2020).
  • [16] J. Kuhfeld, N.D. Lepikhin, D. Luggenhölscher and U. Czarnetzki, J. Phys. D: Appl. Phys. 54, 305204 (2021).
  • [17] N. Britun, M. Gaillard, A. Ricard, Y.M. Kim, K.S. Kim and J.G. Han, J. Phys. D: Appl. Phys. 40, 1022 (2007).
  • [18] T. Silva, N. Britun, T. Godfroid and R. Snyders, Plasma Sources Sci. Technol. 23, 025009 (2014).
  • [19] T. Sakamoto, H. Matsuura and H. Akatsuka, J. Appl. Phys. 101, 023307 (2007).
  • [20] H. Sugai and H. Toyoda, J. Vac. Sci. Technol. A 10, 1193 (1992).
  • [21] S. Agarwal, G.W.W. Quax, M.C.M. van de Sanden, D. Maroudas and E.S. Aydila, J. Vac. Sci. Technol. A 22, 71 (2004).
  • [22] J. Benedikt, S. Agarwal, D. Eijkman, W. Vandamme, M. Creatore and M.C.M. van de Sanden, J. Vac. Sci. Technol. A 23, 1400 (2005).
  • [23] J. Osaka, M. Senthil Kumar, H. Toyoda, T. Ishijima, H. Sugai and T. Mizutani, Appl. Phys. Lett. 90, 172114 (2007).
  • [24] Biagi database, www.lxcat.net, retrieved on December 23, 2021.
  • [25] L.C. Pitchford, L.L. Alves, K. Bartschat, S.F. Biagi, M.C. Bordage, A.V. Phelps, C.M. Ferreira, G.J.M. Hagelaar, W.L. Morgan, S. Pancheshnyi, V. Puech, A. Stauffer and O. Zatsarinny, J. Phys. D: Appl. Phys. 46, 334001 (2013).
  • [26] NIST Chemistry webbook, https://webbook.nist.gov/chemistry/
  • [27] I. Suzuki, J. Mol. Spectrosc. 25, 479 (1968).
  • [28] W. Lee, I.V. Adamovich and W.R. Lempert, J. Chem. Phys. 114, 1178 (2001).
  • [29] Y. Du, T.V. Tsankov, D. Luggenhölscher and U. Czarnetzki, J. Phys. D: Appl. Phys. 54, 34LT02 (2021).
  • [30] Y. Du, T.V. Tsankov, D. Luggenhölscher and U. Czarnetzki, J. Phys. D: Appl. Phys. 54, 365201 (2021).